2.設(shè)函數(shù)f(x)=ex-a(x+1)(e是自然對數(shù)的底數(shù),e=2.71828…).
(1)若f'(0)=0,求實數(shù)a的值,并求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=f(x)+$\frac{a}{e^x}$,且A(x1,g(x1)),B(x2,g(x2))(x1<x2)是曲線y=g(x)上任意兩點,若對任意的a≤-1,恒有g(shù)(x2)-g(x1)>m(x2-x1)成立,求實數(shù)m的取值范圍.

分析 (1)求出函數(shù)f(x)的導(dǎo)數(shù),根據(jù)f'(0)=0,求出a的值,從而求出函數(shù)的單調(diào)區(qū)間即可;
(2)得到g(x2)-mx2>g(x1)-mx1,令函數(shù)F(x)=g(x)-mx,則F(x)在R上單調(diào)遞增,根據(jù)函數(shù)的單調(diào)性求出m的范圍即可.

解答 解:(1)∵f(x)=ex-a(x+1),
∴f′(x)=ex-a,
∵f′(0)=1-a=0,∴a=1,∴f′(x)=ex-1,
由f′(x)=ex-1>0,得x>0;由由f′(x)=ex-1<0,得x<0,
∴函數(shù)f(x)的單調(diào)增區(qū)間為(0,+∞),單調(diào)減區(qū)間為(-∞,0). 
(2)由$\frac{{g({x_2})-g({x_1})}}{{{x_2}-{x_1}}}$>m,(x1<x2)變形得:g(x2)-mx2>g(x1)-mx1
令函數(shù)F(x)=g(x)-mx,則F(x)在R上單調(diào)遞增,
∴F′(x)=g′(x)-m≥0,即m≤g′(x)在R上恒成立,
$g'(x)={e^x}-a-\frac{a}{e^x}≥2\sqrt{{e^x}•(-\frac{a}{e^x})}-a=-a+2\sqrt{-a}={(\sqrt{-a}+1)^2}-1≥3$,
故m≤3.
∴實數(shù)m的取值范圍是(-∞,3].

點評 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用以及轉(zhuǎn)化思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知圓O:x2+y2=r2(r>0)與直線3x-4y+20=0相切,則r=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在平面直角坐標(biāo)系中,定點F(1,0),P是定直線l:x=-1上一動點,過點P作l的垂線與線段PF的垂直平分線相交于點Q,記Q點的軌跡為曲線T,過點E(2,0)作斜率分別為k1,k2的兩條直線AB,CD交曲線T于點A,B,C,D,且M,N分別是AB,CD的中點.
(1)求曲線T的方程;
(2)若k1+k2=1,求證:直線MN過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=ex-k-x,(x∈R).
(1)當(dāng)k=0時,若函數(shù)f(x)≥m在R上恒成立,求實數(shù)m的取值范圍;
(2)試判斷當(dāng)k>1時,函數(shù)f(x)在(k,2k)內(nèi)是否存在兩點;若存在,求零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知△ABC三邊a,b,c上的高分別為$\frac{1}{2},\frac{{\sqrt{2}}}{2},1$,則cosA=$-\frac{{\sqrt{2}}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列運算中,正確的是( 。
A.x3•x2=x5B.x+x2=x3C.2x3÷x2=xD.($\frac{x}{2}$)3=$\frac{{x}^{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.△ABC的三個內(nèi)角A,B,C的對邊分別是a,b,c,$\frac{cosA-2cosC}{cosB}=\frac{2c-a}$.
(1)若C=A+$\frac{π}{3}$,求角A的大小;
(2)若cosB=$\frac{1}{4}$,△ABC的周長為5,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}中,a1=1,其前n項和為Sn,且滿足an=$\frac{2{{S}_{n}}^{2}}{2{S}_{n}-1}$,(n≥2)
(1)求證:數(shù)列{$\frac{1}{{S}_{n}}$}是等差數(shù)列;
(2)求:前n項和公式Sn;
(3)證明:當(dāng)n≥2時,S1+$\frac{1}{2}$S2+$\frac{1}{3}$S3+…+$\frac{1}{n}$Sn<$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)F1,F(xiàn)2分別是橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左右焦點,M是橢圓C上一點,且直線MF2與x軸垂直,直線MF1與C的另一個交點為N.
(1)若直線MN的斜率為$\frac{3}{4}$,求C的離心率;
(2)若直線MN在y軸上的截距為2,且MN=5F1N,求橢圓C的方程.

查看答案和解析>>

同步練習(xí)冊答案