【題目】已知橢圓短軸端點(diǎn)和兩個(gè)焦點(diǎn)的連線構(gòu)成正方形,且該正方形的內(nèi)切圓方程為.

(1)求橢圓的方程;

(2)若拋物線的焦點(diǎn)與橢圓的一個(gè)焦點(diǎn)重合,直線與拋物線交于兩點(diǎn),且,求的面積的最大值.

【答案】(1);(2).

【解析】試題分析:(1)先寫(xiě)出一個(gè)短軸端點(diǎn)與一個(gè)焦點(diǎn)的直線方程可以是,即,利用圓心到直線距離等于半徑,列方程求解即可;

(2)拋物線的焦點(diǎn)在軸的正半軸上,故,故,拋物線的方程為,由,可得,設(shè)點(diǎn),則, 代入求出關(guān)于的表達(dá)式,利用判別式大于0的范圍,求值域即可.

試題解析:

(1) 設(shè)橢圓的焦距為,則由條件可得,連接一個(gè)短軸端點(diǎn)與一個(gè)焦點(diǎn)的直線方程可以是,即,由直線與圓相切可得,故,則,故橢圓的方程為.

(2) 拋物線的焦點(diǎn)在軸的正半軸上,故,故,拋物線的方程為,由,可得,由直線與拋物線有兩個(gè)不同交點(diǎn)可得

時(shí)恒成立,設(shè)點(diǎn),則,則,又點(diǎn)到直線的距離為,故的面積為.令,則,令,可得,故上單調(diào)遞增,在上單調(diào)遞減,故時(shí), 取最大值,則的面積取最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(12分)在數(shù)列中,對(duì)于任意,等式

成立,其中常數(shù).

(Ⅰ)求的值;

(Ⅱ)求證:數(shù)列為等比數(shù)列;

(Ⅲ)如果關(guān)于n的不等式的解集為

,求b和c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班同學(xué)利用國(guó)慶節(jié)進(jìn)行社會(huì)實(shí)踐,對(duì)[25,55]歲的人群隨機(jī)抽取人進(jìn)行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查,若生活習(xí)慣符合低碳觀念的稱為低碳族,否則稱為非低碳族,得到如下統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖:

組數(shù)

分組

低碳族的人數(shù)

占本組的頻率

第一組

[25,30)

120

0.6

第二組

[30,35)

195

第三組

[3540)

100

0.5

第四組

[40,45)

0.4

第五組

[45,50)

30

0.3

第六組

[50,55]

15

0.3

(1)補(bǔ)全頻率分布直方圖并求 的值;

(2)從年齡段在[4050)低碳族中采用分層抽樣法抽取6人參加戶外低碳體驗(yàn)活動(dòng),其中選取2人作為領(lǐng)隊(duì),求選取的2名領(lǐng)隊(duì)中恰有1人年齡在[40,45)歲的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

,當(dāng)時(shí),的單調(diào)遞減區(qū)間;

若函數(shù)有唯一的零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲,乙兩臺(tái)機(jī)床同時(shí)生產(chǎn)一種零件,其質(zhì)量按測(cè)試指標(biāo)劃分:指標(biāo)大于或等于95為正品,小于95為次品,現(xiàn)隨機(jī)抽取這兩臺(tái)車床生產(chǎn)的零件各100件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如下:

測(cè)試指標(biāo)

機(jī)床甲

8

12

40

32

8

機(jī)床乙

7

18

40

29

6

(1)試分別估計(jì)甲機(jī)床、乙機(jī)床生產(chǎn)的零件為正品的概率;

(2)甲機(jī)床生產(chǎn)一件零件,若是正品可盈利160元,次品則虧損20元;乙機(jī)床生產(chǎn)一件零件,若是正品可盈利200元,次品則虧損40元,在(1)的前提下,現(xiàn)需生產(chǎn)這種零件2件,以獲得利潤(rùn)的期望值為決策依據(jù),應(yīng)該如何安排生產(chǎn)最佳?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在邊長(zhǎng)為4的正方形的邊上有一點(diǎn)沿著折線由點(diǎn)(起點(diǎn))向點(diǎn)(終點(diǎn))運(yùn)動(dòng)。設(shè)點(diǎn)運(yùn)動(dòng)的路程為,的面積為,且之間的函數(shù)關(guān)系式用如圖所示的程序框圖給出.

(1)寫(xiě)出框圖中①、②、③處應(yīng)填充的式子;

(2)若輸出的面積值為6,則路程的值為多少?并指出此時(shí)點(diǎn)在正方形的什么位置上?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a1+3a2=1,a32=9a2a6 ,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log3a1+log3a2+…+log3an , 求數(shù)列{ }的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形ABCD的兩條對(duì)角線相交于點(diǎn)M(2,0),AB邊所在直線的方程為x-3y-6=0,點(diǎn)T(-1,1)在AD邊所在直線上.

1求AD邊所在直線的方程;

2求矩形ABCD外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電子原件生產(chǎn)廠生產(chǎn)的10件產(chǎn)品中,有8件一級(jí)品,2件二級(jí)品,一級(jí)品和二級(jí)品在外觀上沒(méi)有區(qū)別.從這10件產(chǎn)品中任意抽檢2件,計(jì)算:
(1)2件都是一級(jí)品的概率;
(2)至少有一件二級(jí)品的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案