9.如圖,在三棱柱ABC-A1B1C1中,∠BAC=60°,∠A1AC=∠A1AB,AA1=AB=AC=2,點(diǎn)O是BC的中點(diǎn).
(1)求證:BC⊥平面A1AO;
(2)若A1O=1,求直線BB1與平面A1C1B所成角的正弦值.

分析 (1)連接A1C,證明BC⊥A1O,OA⊥BC,即可證明BC⊥平面A1AO;
(2)若A1O=1,求出B1到平面A1BC1距離,即可求直線BB1與平面A1C1B所成角的正弦值.

解答 (1)證明:連接A1C,則
∵∠A1AC=∠A1AB,AA1=AB=AC,
∴△A1AC=△A1AB,∴A1C=A1B,
∵點(diǎn)O是BC的中點(diǎn),
∴BC⊥A1O,
∵AB=AC,點(diǎn)O是BC的中點(diǎn),
∴OA⊥BC,
∵A1O∩OA=O,
∴BC⊥平面A1AO;
(2)解:由(1)可得BC⊥A1A,∴四邊形BCC1B1是矩形,
∴C1B=2$\sqrt{2}$,
∵A1C1=2,A1B=$\sqrt{2}$,
∴cos∠A1BC1=$\frac{2+8-4}{2×\sqrt{2}×2\sqrt{2}}$=$\frac{3}{4}$,
∴sin∠A1BC1=$\frac{\sqrt{7}}{4}$,
∴${S}_{△{A}_{1}B{C}_{1}}$=$\frac{1}{2}×\sqrt{2}×2\sqrt{2}×\frac{\sqrt{7}}{4}$=$\frac{\sqrt{7}}{2}$,
設(shè)B1到平面A1BC1距離為h,則$\frac{1}{3}×\frac{\sqrt{7}}{2}h$=$\frac{1}{3}×\frac{1}{2}×2×\sqrt{3}×1$,
∴h=$\frac{2\sqrt{3}}{\sqrt{7}}$,
∴直線BB1與平面A1C1B所成角的正弦值=$\frac{\frac{2\sqrt{3}}{\sqrt{7}}}{2}$=$\frac{\sqrt{21}}{7}$.

點(diǎn)評(píng) 本題考查線面垂直,考查線面角,考查學(xué)生分析解決問(wèn)題的能力,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知a≥$\frac{4}{3}$${∫}_{0}^{\frac{π}{6}}$cosθdθ,則曲線f(x)=ax+$\frac{2}{a}$ln(ax-1)在點(diǎn)(2,f(2))處切線的斜率的最小值為$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.調(diào)查表明:甲種農(nóng)作物的長(zhǎng)勢(shì)與海拔高度、土壤酸堿度、空氣濕度的指標(biāo)有極強(qiáng)的相關(guān)性,現(xiàn)將這三項(xiàng)的指標(biāo)分別記為x,y,z,并對(duì)它們進(jìn)行量化:0表示不合格,1表示臨界合格,2表示合格,再用綜合指標(biāo)ω=x+y+z的值評(píng)定這種農(nóng)作物的長(zhǎng)勢(shì)等級(jí),若ω≥4,則長(zhǎng)勢(shì)為一級(jí);若2≤ω≤3,則長(zhǎng)勢(shì)為二級(jí);若0≤ω≤1,則長(zhǎng)勢(shì)為三級(jí),為了了解目前這種農(nóng)作物長(zhǎng)勢(shì)情況,研究人員隨機(jī)抽取10塊種植地,得到如表中結(jié)果:
種植地編號(hào)A1A2A3A4A5
(x,y,z)(1,1,2)(2,1,1)(2,2,2)(0,0,1)(1,2,1)
種植地編號(hào)A6A7A8A9A10
(x,y,z)(1,1,2)(1,1,1)(1,2,2)(1,2,1)(1,1,1)
(Ⅰ)在這10塊該農(nóng)作物的種植地中任取兩塊地,求這兩塊地的空氣濕度的指標(biāo)z相同的概率;
(Ⅱ)從長(zhǎng)勢(shì)等級(jí)是一級(jí)的種植地中任取一塊地,其綜合指標(biāo)為A,從長(zhǎng)勢(shì)等級(jí)不是一級(jí)的種植地中任取一塊地,其綜合指標(biāo)為B,記隨機(jī)變量X=A-B,求X的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x-y+4≥0\\ x-3y-6≤0\\ 2x+3y-12≤0\end{array}\right.$則z=x+2y的最大值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知Sn是正項(xiàng)數(shù)列{an}的前n項(xiàng)和,且2Sn=an2+an,等比數(shù)列{bn}的公比q>1,b1=2,且b1,b3,b2+10成等差數(shù)列.
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=an•bn+(-1)n$\frac{2n+1}{{{a_n}•{a_{n+1}}}}$,記T2n=c1+c2+c3+…+c2n,求T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=$\frac{lnx}{x+1}$.
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)當(dāng)t<0時(shí),對(duì)x>0且x≠1,均有f(x)-$\frac{t}{x}$>$\frac{lnx}{x-1}$成立.求實(shí)數(shù)t的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知數(shù)列{an}滿足$\left\{\begin{array}{l}{{a}_{1}=1}\\{{a}_{n+1}={a}_{n}+p•{2}^{n}-nq(n∈{N}^{*})}\end{array}\right.$其中p,q∈R.
(1)若數(shù)列前四項(xiàng)a1,a2,a3,a4依次成等差數(shù)列,求p,q的值;
(2)若q=0,且數(shù)列{an}為等比數(shù)列,求p的值;
(3)若p=1,且a5是數(shù)列{an}的最小項(xiàng),求q的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足an=2Sn+1(n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=(2n-1)•an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,在四棱錐E-ABCD中,△ABD是正三角形,△BCD是等腰三角形,∠BCD=120°,EC⊥BD,連結(jié)AC交BD于點(diǎn)O.
(Ⅰ)求證:平面AEC⊥平面ABCD;
(Ⅱ)判斷在線段AE上是否存在點(diǎn)M,使得DM∥平面BEC,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案