【題目】已知函數(shù)

1)討論函數(shù)的單調(diào)性;

2)若函數(shù)存在極大值且極大值點(diǎn)為1,證明: .

【答案】(1)見解析(2)見解析

【解析】試題分析:(1)先求導(dǎo)數(shù),再根據(jù)a討論導(dǎo)函數(shù)符號以及零點(diǎn),根據(jù)導(dǎo)函數(shù)符號確定單調(diào)性,(2)由極值定義求a,再作差函數(shù): ,對函數(shù)二次求導(dǎo)得差函數(shù)存在最小值,轉(zhuǎn)化證明最小值非負(fù)即可.

試題解析:(1)由題意,

①當(dāng), 函數(shù)上單調(diào)遞增;

②當(dāng),函數(shù)單調(diào)遞增,

,故當(dāng), 當(dāng)

, ,所以函數(shù)上單調(diào)遞減,函數(shù)上單調(diào)遞增;

③當(dāng)函數(shù)單調(diào)遞減, ,故當(dāng), ,當(dāng) ,所以函數(shù)上單調(diào)遞增函數(shù)上單調(diào)遞減.

2 ,令,則

當(dāng)

所以矛盾;

當(dāng)

所以矛盾;

當(dāng)

,成立,

,所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的奇函數(shù),當(dāng)時,.

1)求函數(shù)的解析式;

2)畫出函數(shù)上的圖象;

3)解關(guān)于的不等式(其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)O為坐標(biāo)原點(diǎn),動點(diǎn)M在橢圓C上,過Mx軸的垂線,垂足為N,點(diǎn)P滿足.

1)求點(diǎn)P的軌跡方程;

2)設(shè)點(diǎn)在直線上,且.證明:過點(diǎn)P且垂直于OQ的直線C的左焦點(diǎn)F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知不等式ax2-5x+b>0的解是-3<x<2,設(shè)A={x|bx2-5x+a>0},B={x|}.

(1)求a,b的值;

(2)求ABA∪(UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓 的離心率,左頂點(diǎn)為,過點(diǎn)作斜率為的直線交橢圓于點(diǎn),交軸于點(diǎn)

(1)求橢圓的方程;

(2)已知的中點(diǎn),是否存在定點(diǎn),對于任意的都有,若存在,求出點(diǎn)

坐標(biāo);若不存在說明理由;

(3)若過點(diǎn)作直線的平行線交橢圓于點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】幾千年的滄桑沉淀,凝練了西樵山的美,清幽秀麗的自然風(fēng)光,文化底蘊(yùn)厚重的旅游,古樸自然的民俗風(fēng)情.自明清以來,文人雅士,群賢畢至,旅人游子,紛至沓來,使秀美的西樵山成為名嗓南粵的旅游熱點(diǎn).如圖,游客從某旅游景區(qū)的景點(diǎn)處下山至處有兩種路徑,一種是從沿直線步行到,另一種是先從乘景區(qū)觀光車到,然后從沿直線步行到.現(xiàn)有甲、乙兩位游客從處下山,甲沿勻速步行,速度為50/分鐘,在甲出發(fā)2分鐘后,乙從乘觀光車到,在處停留20分鐘后,再從勻速步行到.假設(shè)觀光車勻速直線運(yùn)行的速度為250/分鐘,山路長為2340米,經(jīng)測量,,.

1)求觀光車路線的長;

2)問乙出發(fā)多少分鐘后,乙在觀光車上與甲的距離最短?

3)為使兩位游客在處互相等待的時間不超過3分鐘,乙步行的速度應(yīng)控制在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】f(x)是定義在R上的增函數(shù),則下列結(jié)論一定正確的是( )

A.f(x)f(x)是偶函數(shù)且是增函數(shù)

B.f(x)f(x)是偶函數(shù)且是減函數(shù)

C.f(x)f(x)是奇函數(shù)且是增函數(shù)

D.f(x)f(x)是奇函數(shù)且是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)有兩個零點(diǎn)-31,且有最小值-4.

1)求的解析式;

2)寫出函數(shù)單調(diào)區(qū)間;

3)令,若,證明:上有唯一零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, 底面 , , 為棱的中點(diǎn).

)求證:

)求證:平面平面

)試判斷與平面是否平行?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案