【題目】設(shè)O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)M在橢圓C上,過M作x軸的垂線,垂足為N,點(diǎn)P滿足.
(1)求點(diǎn)P的軌跡方程;
(2)設(shè)點(diǎn)在直線上,且.證明:過點(diǎn)P且垂直于OQ的直線過C的左焦點(diǎn)F.
【答案】(1) .(2)證明見解析.
【解析】試題分析:(1)轉(zhuǎn)移法求軌跡:設(shè)所求動(dòng)點(diǎn)坐標(biāo)及相應(yīng)已知?jiǎng)狱c(diǎn)坐標(biāo),利用條件列兩種坐標(biāo)關(guān)系,最后代入已知?jiǎng)狱c(diǎn)軌跡方程,化簡(jiǎn)可得所求軌跡方程;(2)證明直線過定點(diǎn)問題,一般方法是以算代證:即證,先設(shè) P(m,n),則需證,即根據(jù)條件可得,而,代入即得.
試題解析:解:(1)設(shè)P(x,y),M(),則N(),
由得.
因?yàn)镸()在C上,所以.
因此點(diǎn)P的軌跡為.
由題意知F(-1,0),設(shè)Q(-3,t),P(m,n),則
,
.
由得-3m-+tn-=1,學(xué)&科網(wǎng)又由(1)知,故
3+3m-tn=0.
所以,即.又過點(diǎn)P存在唯一直線垂直于OQ,所以過點(diǎn)P且垂直于OQ的直線l過C的左焦點(diǎn)F.
點(diǎn)睛:定點(diǎn)、定值問題通常是通過設(shè)參數(shù)或取特殊值來確定“定點(diǎn)”是什么、“定值”是多少,或者將該問題涉及的幾何式轉(zhuǎn)化為代數(shù)式或三角問題,證明該式是恒成立的. 定點(diǎn)、定值問題同證明問題類似,在求定點(diǎn)、定值之前已知該值的結(jié)果,因此求解時(shí)應(yīng)設(shè)參數(shù),運(yùn)用推理,到最后必定參數(shù)統(tǒng)消,定點(diǎn)、定值顯現(xiàn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的個(gè)數(shù)是( )
①命題“任意”的否定是“任意;
②命題“若,則”的逆否命題是真命題;
③若命題為真,命題為真,則命題且為真;
④命題“若,則”的否命題是“若,則”.
A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)與函數(shù)的圖象在點(diǎn)(0,0)處有相同的切線.
(Ⅰ)求a的值;
(Ⅱ)設(shè),求函數(shù)在上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)當(dāng)時(shí),記的最小值為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)是R上的奇函數(shù),求實(shí)數(shù)a的值;
(2)若對(duì)于任意,恒有,求實(shí)數(shù)a的取值范圍;
(3)若,函數(shù)在區(qū)間[0,2]上的最大值為4,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)是定義在上的奇函數(shù),且.
(1)確定的解析式;
(2)判斷并證明在上的單調(diào)性;
(3)解不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】李冶(1192-1279),真定欒城(今屬河北石家莊市)人,金元時(shí)期的數(shù)學(xué)家、詩(shī)人、晚年在封龍山隱居講學(xué),數(shù)學(xué)著作多部,其中《益古演段》主要研究平面圖形問題:求圓的直徑,正方形的邊長(zhǎng)等,其中一問:現(xiàn)有正方形方田一塊,內(nèi)部有一個(gè)圓形水池,其中水池的邊緣與方田四邊之間的面積為畝,若方田的四邊到水池的最近距離均為二十步,則圓池直徑和方田的邊長(zhǎng)分別是(注: 平方步為畝,圓周率按近似計(jì)算)
A.步、步B.步、步C.步、步D.步、步
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)存在極大值,且極大值點(diǎn)為1,證明: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com