精英家教網 > 高中數學 > 題目詳情
如圖所示,水塔CD的高是30m,在塔頂C處測得,河對岸兩個目標A,B的俯角分別為30°和45°,并且測得∠ACB=135°,求A,B的距離
考點:解三角形的實際應用
專題:應用題,解三角形
分析:由題意,AC=2CD=60m,BC=
2
CD=30
2
m,△ACB中,利用余弦定理求A,B的距離.
解答: 解:由題意,AC=2CD=60m,BC=
2
CD=30
2
m,
△ACB中,AB=
3600+1800-2×60×30
2
×(-
2
2
)
=30
10
m.
點評:本題考查余弦定理的運用,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
-x+3-3a,(x<0)
ax,(x≥0)(a>0且a≠1)
是x∈(-∞,+∞)上的減函數,則a的取值范圍是( 。
A、(0,
2
3
]
B、(
1
3
,1)
C、(2,3)
D、(
1
2
,
2
3
]

查看答案和解析>>

科目:高中數學 來源: 題型:

已知關于x的一元二次方程x2+(m-3)x+1=0的兩根x1和x2滿足x1<x2<1.求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=loga
1+x
1-x
,(a>0且a≠1)
(Ⅰ)求函數f(x)的定義域;
(Ⅱ)判斷f(x)的奇偶性,并予以證明;
(Ⅲ)當a>1時,求使f(x)>0的x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數g(x)=2sin(2x-
π
6
),求g(x)在[-
π
2
,0]上的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

函數y=2-
-x2+4x
的值域是(  )
A、[-2,2]
B、[1,2]
C、[0,2]
D、[-
2
,
2
]

查看答案和解析>>

科目:高中數學 來源: 題型:

若直線ax+2y+a=0和直線3ax+(a-1)y+7=0平行,則實數a的值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(x)=
cos2x
sinx+cosx
+2sinx的定義域為
 
;單調區(qū)間為
 
,其圖象的對稱軸方程為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

設集合M={x|x<2012},N={x|0<x≤2012},則M∪N=( 。
A、M
B、N
C、{x|x≤2012}
D、{x|0<x<2012}

查看答案和解析>>

同步練習冊答案