2.已知圓C:(x-2)2+(y-3)2=16及直線l:(m+2)x+(3m+1)y=15m+10(m∈R).
(1)證明:不論m取什么實數(shù),直線l與圓C恒相交;
(2)當直線l被圓C截得的弦長的最短時,求此時直線l方程.

分析 (1)利用直線系求出直線恒過的定點坐標判斷點與圓的位置關系,推出結果即可.
(2)利用圓的半徑弦心距與半弦長的關系判斷所求直線的位置,求出斜率,即可得到直線方程.

解答 解:(1)證明:直線l可化為2x+y-10+m(x+3y-15)=0,
即不論m取什么實數(shù),它恒過兩直線2x+y-10=0與x+3y-15=0的交點.兩方程聯(lián)立,解得交點為(3,4).
又有(3-2)2+(4-3)2=2<16,
∴點(3,4)在圓內部,
∴不論m為何實數(shù),直線l與圓恒相交.…(6分)
(2)解:從(1)的結論和直線l過定點M(3,4)且與過此點的圓C的半徑垂直時,l被圓所截的弦長|AB|最短,…(8分)
此時,kl=-$\frac{1}{kCM}$,從而kl=-$\frac{1}{\frac{4-3}{3-2}}$=-1,…(10分)
∴l(xiāng)的方程為y-4=-(x-3),即x+y=7.…(12分)

點評 本題考查直線與圓的位置關系的應用,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

12.將函數(shù)y=sinx的圖象向左平移φ(0≤φ≤2π)個單位后,得到函數(shù)$y=sin({x+\frac{π}{6}})$的圖象,則φ等于$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知橢圓的中心在原點,焦點在y軸上且長軸長為4,短軸長為2,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=t}\\{y=m+2t}\end{array}\right.$(t為參數(shù)).當m為何值時,直線l被橢圓截得的弦長為$\sqrt{6}$?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.要安排某人下月1-10號這十天值班七天,其中連續(xù)值班不能超過3天,則所有不同的值班安排方法有(  )種.
A.16B.28C.40D.56

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在二項式(1-2x)9的展開式中,
(1)求展開式的第四項;
(2)求展開式的常數(shù)項;
(3)求展開式中各項的系數(shù)和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.如圖,在直角坐標系xOy中,將直線y=$\frac{x}{2}$與直線x=1及x軸所圍成的圖形(陰影部分)繞x軸旋轉一周得到一個圓錐,圓錐的體積V圓錐=${∫}_{0}^{1}$π($\frac{x}{2}$)2dx=$\frac{π}{12}$x3|${\;}_{0}^{1}$=$\frac{π}{12}$.據(jù)此類比:將曲線y=x3(x≥0)與直線y=8及y軸所圍成的圖形繞y軸旋轉一周得到一個旋轉體,該旋轉體的體積V=$\frac{96π}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知函數(shù)f(x)=sinx-cosx,則$f'(\frac{π}{3})$=( 。
A.$-\frac{1}{2}-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}+\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}-\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}+\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在銳角△ABC中,角A,B,C所對的邊分別是a,b,c,且$\sqrt{3}$csinA-acosC+b-2c=0.
(1)求角A的大小;
(2)求cosB+cosC的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知直線l1:2x-y+2=0和直線l2:x=-1,拋物線y2=4x上一動點P到直線l1和直線l2的距離之和的最小值是( 。
A.2B.$\frac{4\sqrt{5}}{5}$C.3D.$\sqrt{5}$

查看答案和解析>>

同步練習冊答案