13.已知橢圓的中心在原點(diǎn),焦點(diǎn)在y軸上且長(zhǎng)軸長(zhǎng)為4,短軸長(zhǎng)為2,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=t}\\{y=m+2t}\end{array}\right.$(t為參數(shù)).當(dāng)m為何值時(shí),直線l被橢圓截得的弦長(zhǎng)為$\sqrt{6}$?

分析 由題意求出橢圓方程,化直線的參數(shù)方程為普通方程,聯(lián)立直線方程與橢圓方程,化為關(guān)于x的一元二次方程,然后利用弦長(zhǎng)公式求解.

解答 解:由已知可設(shè)橢圓方程為$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{^{2}}=1$(a>b>0),
且2a=4,2b=2,則a=2,b=1.
∴橢圓方程為$\frac{{y}^{2}}{4}$+x2=1.
化直線參數(shù)方程$\left\{\begin{array}{l}{x=t}\\{y=m+2t}\end{array}\right.$為y=2x+m.
聯(lián)立$\left\{\begin{array}{l}{y=2x+m}\\{{x}^{2}+\frac{{y}^{2}}{4}=1}\end{array}\right.$,得8x2+4mx+m2-4=0.
設(shè)直線l被圓所截的弦的兩個(gè)端點(diǎn)分別為A(x1,y1),B(x2,y2).
則△=16m2-32(m2-4)=128-16m2>0,得-2$\sqrt{2}$<m<$2\sqrt{2}$.
${x}_{1}+{x}_{2}=-\frac{m}{2}$,${x}_{1}{x}_{2}=\frac{{m}^{2}-4}{8}$.
∴|AB|=$\sqrt{5}|{x}_{1}-{x}_{2}|=\sqrt{5}\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{5}\sqrt{\frac{{m}^{2}}{4}-\frac{{m}^{2}-4}{2}}=\sqrt{6}$.
解得:m=$±\frac{4\sqrt{5}}{5}$.
∴m=$±\frac{4\sqrt{5}}{5}$時(shí),直線l被橢圓截得的弦長(zhǎng)為$\sqrt{6}$.

點(diǎn)評(píng) 本題考查橢圓方程的求法,考查了參數(shù)方程化普通方程,訓(xùn)練了弦長(zhǎng)公式的應(yīng)用,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.一盒中放有的黑球和白球,其中黑球4個(gè),白球5個(gè).
(Ⅰ)從盒中同時(shí)摸出兩個(gè)球,求兩球顏色恰好相同的概率.
(Ⅱ)從盒中摸出一個(gè)球,放回后再摸出一個(gè)球,求兩球顏色恰好不同的概率.
(Ⅲ)從盒中不放回的每次摸一球,若取到白球則停止摸球,求取到第三次時(shí)停止摸球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.執(zhí)行如圖所示的程序框圖,若輸出的n=5,則輸入的整數(shù)p的最小值為( 。
A.15B.14C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.為了增強(qiáng)消防安全意識(shí),某中學(xué)對(duì)全體學(xué)生做了依稀消防知識(shí)講座,從男生中隨機(jī)抽取50人,從女生中隨機(jī)抽取70人參加消防知識(shí)測(cè)試,統(tǒng)計(jì)數(shù)據(jù)得到如下列聯(lián)表:
 優(yōu)秀非優(yōu)秀總計(jì)
男生153550
女生304070
總計(jì)4575120
(參考公式:K2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$)
 P(K2≥k0 0.25 0.15 0.10 0.05 0.025 0.010
k01.323  2.072 2.706 3.841 5.024 6.635 
(1)試判斷能否認(rèn)為消防知識(shí)的測(cè)試成績(jī)優(yōu)秀與否與性別有關(guān);
(2)為了宣傳消防知識(shí),從該校測(cè)試成績(jī)獲得優(yōu)秀的同學(xué)中采用分層抽樣的方法,隨機(jī)選出6人組成宣傳小組,先從6人中隨機(jī)抽取2人到校外宣傳,求到校外宣傳的同學(xué)中有男同學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.?dāng)?shù)列$\sqrt{3}$,$\sqrt{7}$,$\sqrt{11}$,$\sqrt{15}$,…的一個(gè)通項(xiàng)公式是( 。
A.an=$\sqrt{4n+1}$B.an=$\sqrt{4n-1}$C.an=$\sqrt{2n+1}$D.an=$\sqrt{2n+3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.總體由編號(hào)為01,02,…,19,20的20個(gè)個(gè)體組成.利用下面的隨機(jī)數(shù)表選取6個(gè)個(gè)體,選取方法是從隨機(jī)數(shù)表第1行的第5列和第6列數(shù)字開(kāi)始由左到右依次選取兩個(gè)數(shù)字,則選出來(lái)的第5個(gè)個(gè)體的編號(hào)為01.
7816    6572    0802    6314    0702    4369    9728    0198
3204    9234    4935    8200    3623    4869    6938    7481.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若(1+2x)100=a0+a1(x-1)+a2(x-1)2+…+a100(x-1)100,則a1+a2+…+a100=5100-3100

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知圓C:(x-2)2+(y-3)2=16及直線l:(m+2)x+(3m+1)y=15m+10(m∈R).
(1)證明:不論m取什么實(shí)數(shù),直線l與圓C恒相交;
(2)當(dāng)直線l被圓C截得的弦長(zhǎng)的最短時(shí),求此時(shí)直線l方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知集合A={1,2,3,4},B={x|x=n2,n∈A},則A∩B=( 。
A.{1}B.{1,4}C.{1,2}D.{0,1,2}

查看答案和解析>>

同步練習(xí)冊(cè)答案