分析 (1)原函數(shù)解析式可變成$f(x)=(x-1)+\frac{2}{x-1}+1$,并判斷x-1>0,從而由基本不等式即可求出該函數(shù)的最小值,并求出對應(yīng)x值;
(2)由f(x)≥-2便可得出$x+\frac{2}{x-1}≥2$,化簡,通分便可得出$\frac{{x}^{2}+x}{x-1}≥0$,根據(jù)穿根法即可求得該不等式的解集.
解答 解:(1)$f(x)=(x-1)+\frac{2}{x-1}+1$且x-1>0;
∴f(x)$≥2\sqrt{(x-1)\frac{2}{x-1}}+1=2\sqrt{2}+1$;
當(dāng)且僅當(dāng)$x-1=\frac{2}{x-1}$,即$x=\sqrt{2}+1$時,函數(shù)f(x)取得最小值$2\sqrt{2}+1$;
(2)$f(x)=x+\frac{2}{x-1}≥-2$$?x+2+\frac{2}{x-1}≥0$$?\frac{{{x^2}+x}}{x-1}≥0$$?\left\{\begin{array}{l}x(x+1)(x-1)≥0\\ x≠1\end{array}\right.$;
由標(biāo)根法得:原不等式的解集為{x|-1≤x≤0或x>1}.
點評 本題考查函數(shù)最值的定義及求法,基本不等式求最值的方法,以及分式不等式的解法,會用標(biāo)根法.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0,2,3} | B. | {0,3,5} | C. | {0,1,2,3} | D. | {0,2,3,5} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 在(0,+∞)上單調(diào)遞增的奇函數(shù) | B. | 在(0,+∞)上單調(diào)遞減的奇函數(shù) | ||
C. | 在(0,+∞)上單調(diào)遞增的偶函數(shù) | D. | 在(0,+∞)上單調(diào)遞減的偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com