14.圓(x+2)2+(y-1)2=1的圓心坐標(biāo)是( 。
A.(2,1)B.(2,-1)C.(-2,1)D.(-2,-1)

分析 直接利用圓的標(biāo)準(zhǔn)方程寫出圓的圓心坐標(biāo)即可.

解答 解:圓(x+2)2+(y-1)2=1的圓心坐標(biāo)是:(-2,1).
故選:C.

點(diǎn)評(píng) 本題考查圓的標(biāo)準(zhǔn)方程的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知2${\;}^{{x}^{2}+x}$≤($\frac{1}{4}$)x-2,
(1)求x的取值范圍;
(2)求函數(shù)y=2${\;}^{{x}^{2}+x}$+2的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知定義在實(shí)數(shù)集R上的函數(shù)f(x)滿足f(2)=9,且f(x)的導(dǎo)函數(shù)滿足f'(x)<4,則不等式f(lnx)>4lnx+1的解集為( 。
A.(1,+∞)B.(e2,+∞)C.(-∞,e2D.(0,e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.給出下列四個(gè)命題:
①函數(shù)f(x)在x>0時(shí)是增函數(shù),x<0也是增函數(shù),所以f(x)是增函數(shù);
②正比例函數(shù)的圖象一定通過直角坐標(biāo)系的原點(diǎn);
③若函數(shù)f(x)的定義域?yàn)閇0,2],則函數(shù)f(2x)的定義域?yàn)閇1,2];
④y=x2-2|x|-3的遞增區(qū)間為[1,+∞).
其中正確命題的序號(hào)是②.(填上所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖所示,墻上掛有一塊邊長(zhǎng)為π的正方形木板,上面畫有正弦曲線半個(gè)周期的圖案(陰影部分).某人向此板投鏢,假設(shè)每次都能擊中木板并且擊中木板上每個(gè)點(diǎn)的可能性都一樣,則他擊中陰影部分的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{2}{π^2}$D.$\frac{1}{2π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知A={x|-1<x<2},B={x|log2x>0}.
(1)求A∩B和A∪B;
(2)定義A-B={x|x∈A且x∉B},求A-B和B-A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.指數(shù)函數(shù)f(x)=ax(a>0且a≠1)在R上是增函數(shù),則a的取值范圍是( 。
A.a>1B.a>2C.0<a<1D.1<a<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若“?x∈[$\frac{π}{2}$,π],sinx+$\sqrt{3}$cosx<m”為假命題,則實(shí)數(shù)m的范圍(-∞,-$\sqrt{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知△ABC三邊的長(zhǎng)分別為5、12、13,則△ABC的外心O到重心G的距離為( 。
A.$\frac{13}{3}$B.$\frac{13}{6}$C.4D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案