15.函數(shù)$f(x)=cos(x-\frac{π}{2})+sin(x+\frac{π}{3})$的單調(diào)遞增區(qū)間為$(2kπ-\frac{2π}{3},2kπ+\frac{π}{3})k∈Z$.

分析 利用三角函數(shù)恒等變換的應用化簡函數(shù)解析式可得f(x)=$\sqrt{3}$sin(x+$\frac{π}{6}$),令2kπ-$\frac{π}{2}$≤x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z,即可解得單調(diào)遞增區(qū)間.

解答 解:∵$f(x)=cos(x-\frac{π}{2})+sin(x+\frac{π}{3})$=sinx+$\frac{1}{2}$sinx+$\frac{\sqrt{3}}{2}$cosx=$\sqrt{3}$sin(x+$\frac{π}{6}$),
令2kπ-$\frac{π}{2}$≤x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z,解得:2kπ-$\frac{2π}{3}$≤x≤2kπ+$\frac{π}{3}$,k∈Z,
∴函數(shù)$f(x)=cos(x-\frac{π}{2})+sin(x+\frac{π}{3})$的單調(diào)遞增區(qū)間為:$(2kπ-\frac{2π}{3},2kπ+\frac{π}{3})k∈Z$.
故答案為:$(2kπ-\frac{2π}{3},2kπ+\frac{π}{3})k∈Z$.

點評 本題主要考查了三角函數(shù)恒等變換的應用,正弦函數(shù)的單調(diào)性的應用,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想的應用,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

5.已知命題“若p,則q”,假設(shè)其逆命題為真,則p是q的(  )
A.充分條件B.必要條件
C.既不是充分條件也不是必要條件D.無法判斷

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知m,n是兩條不同的直線,α,β是兩個不同的平面,則下列命題正確的是( 。
A.若m∥n,m⊥α,則n⊥αB.若m∥α,n∥α,則m∥nC.若m⊥α,m∥β,則α∥βD.若m∥α,α⊥β,則m⊥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.設(shè)f(x)是定義在R上的函數(shù),對任意實數(shù)m,n,都有f(m)f(n)=f(m+n),且當x<0時,0<f(x)<1.
(1)證明:①f(0)=1;②當x>0時,f(x)>1;③f(x)是R上的增函數(shù);
(2)設(shè)a∈R,試解關(guān)于x的不等式f(x2-3ax+1)f(-3x+6a+1)≤1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知各項為正數(shù)的數(shù)列{an}的前n項和為Sn,且滿足$\sqrt{2{S_n}}=\frac{{{a_n}+2}}{2}$
(Ⅰ)求證:{an}為等差數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)${b_n}=\frac{1}{{{a_n}+{a_1}}}+\frac{1}{{{a_n}+{a_2}}}+…+\frac{1}{{{a_n}+{a_n}}}+\frac{1}{{{a_n}+{a_{n+1}}}}({n∈{N^*}})$,求證:${b_n}≤\frac{3}{8}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=x-2sinx
(Ⅰ)求函數(shù)f(x)在[0,π]的最值;
(Ⅱ)若存在$x∈(0,\frac{π}{2})$,不等式f(x)<ax成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.如圖所示,已知線段AB在平面α內(nèi),線段AC⊥α,線段BD⊥AB,線段DD′⊥α于D′,如果∠DBD=30°,AB=AC=BD=1,則CD的長為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.設(shè)定義在[-3,3]上的偶函數(shù)f(x),當x≥0時,f(x)單調(diào)遞減,若f(1-2m)<f(2m)成立,則m的取值范圍是[-1,$\frac{1}{4}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.函數(shù)f(x)=$\sqrt{x(2x-1)}$的定義域是M,則∁RM=(0,$\frac{1}{2}$).

查看答案和解析>>

同步練習冊答案