【題目】已知函數(shù),其中.

1)若函數(shù)是奇函數(shù),試證明:對(duì)任意的,恒有;

2)若對(duì)于,函數(shù)在區(qū)間上的最大值是3,試求實(shí)數(shù)的值;

3)設(shè),問(wèn):是否存在實(shí)數(shù),使得對(duì)任意的,都有?如果存在,請(qǐng)求出的取值范圍;如果不存在,請(qǐng)說(shuō)明理由.

【答案】(1)證明見(jiàn)解析(2)(3)存在,

【解析】

1)由函數(shù)是奇函數(shù),可得,代入計(jì)算即可證明;
2,,對(duì)分類討論,利用對(duì)數(shù)函數(shù)的單調(diào)性即可得出;
3)假設(shè)存在實(shí)數(shù),使得對(duì)任意的,都有,則等價(jià)于對(duì)任意的,的最小值大于的最大值.令,,可得其最大值.于是問(wèn)題等價(jià)于,的最小值大于1,再利用復(fù)合函數(shù)的單調(diào)性即可得出.

1)證明:因?yàn)?/span>是定義域內(nèi)的奇函數(shù),

所以對(duì)任意的,恒有

,得

對(duì)任意的,恒有

2

當(dāng)時(shí),

在區(qū)間是增函數(shù),

所以.

當(dāng)時(shí)

在區(qū)間是減函數(shù),無(wú)解

綜上所述:

3所以

又因?yàn)?/span>,所以,又因?yàn)?/span>,所以

因?yàn)閷?duì)任意的,都有

所以的最小值大于的最大值

遞減,所以的最小值為

,因?yàn)?/span>,所以遞增,

所以的最大值為

所以,解得.

綜上所述:滿足題設(shè)的實(shí)數(shù)的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知AB、C是△ABC的三個(gè)內(nèi)角,向量m=(-1, ),n=(cosA,sinA),且m·n=1.

(1)求角A;

(2)若=-3,求tanC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)相鄰兩個(gè)最高點(diǎn)的距離等于

(1)求的值;

(2)求出函數(shù)的對(duì)稱軸,對(duì)稱中心;

(3)把函數(shù)圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的3倍(橫坐標(biāo)不變),得到函數(shù),再把函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),得到函數(shù),不需要過(guò)程,直接寫(xiě)出函數(shù)的函數(shù)關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中數(shù)列是公比為的等比數(shù)列,數(shù)列是公差為的等差數(shù)列.

1)若,,分別寫(xiě)出數(shù)列和數(shù)列的通項(xiàng)公式;

2)若是奇函數(shù),且,求;

3)若函數(shù)的圖像關(guān)于點(diǎn)對(duì)稱,且當(dāng)時(shí),函數(shù)取得最小值,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了引導(dǎo)居民合理用水,某市決定全面實(shí)施階梯水價(jià).階梯水價(jià)原則上以住宅(一套住宅為一戶)的月用水量為基準(zhǔn)定價(jià),具體劃分標(biāo)準(zhǔn)如表:

階梯級(jí)別

第一階梯水量

第二階梯水量

第三階梯水量

月用水量范圍(單位:立方米)

從本市隨機(jī)抽取了10戶家庭,統(tǒng)計(jì)了同一月份的月用水量,得到如圖莖葉圖:

(1)現(xiàn)要在這10戶家庭中任意選取3家,求取到第二階梯水量的戶數(shù)的分布列與數(shù)學(xué)期望;

(2)用抽到的10戶家庭作為樣本估計(jì)全市的居民用水情況,從全市依次隨機(jī)抽取10戶,若抽到戶月用水量為二階的可能性最大,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線與直線的距離為,橢圓的離心率為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)在(1)的條件下,拋物線的焦點(diǎn)與點(diǎn)關(guān)于軸上某點(diǎn)對(duì)稱,且拋物線與橢圓在第四象限交于點(diǎn),過(guò)點(diǎn)作拋物線的切線,求該切線方程并求該直線與兩坐標(biāo)軸圍成的三角形面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三角形面積為,,,為三角形三邊長(zhǎng),為三角形內(nèi)切圓半徑,利用類比推理,可以得出四面體的體積為( )

A.

B.

C. 為四面體的高)

D. (其中,,,分別為四面體四個(gè)面的面積,為四面體內(nèi)切球的半徑,設(shè)四面體的內(nèi)切球的球心為,則球心到四個(gè)面的距離都是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長(zhǎng)期收益率市場(chǎng)預(yù)測(cè),投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風(fēng)險(xiǎn)型產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬(wàn)元時(shí)兩類產(chǎn)品的收益分別為0.125萬(wàn)元和0.5萬(wàn)元。

(1)分別寫(xiě)出兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系式;

(2)該家庭現(xiàn)有20萬(wàn)元資金,全部用于理財(cái)投資,怎樣分配資金才能獲得最大收益?其最大收益為多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線過(guò)點(diǎn),其參數(shù)方程為為參數(shù),),以為極點(diǎn),軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)求已知曲線和曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案