【題目】(本題滿分13分)已知函數(shù),
.
(Ⅰ)求函數(shù)的最小正周期與單調(diào)增區(qū)間;
(Ⅱ)求函數(shù)在
上的最大值與最小值.
【答案】(1),增區(qū)間為
;(2)最小值
,最大值
.
【解析】
試題分析:本題主要考查倍角公式、兩角和的正弦公式、三角函數(shù)的周期、單調(diào)區(qū)間、三角函數(shù)的最值等基礎(chǔ)知識,考查學(xué)生的分析問題解決問題的能力、轉(zhuǎn)化能力、計(jì)算能力.第一問,先利用倍角公式和降冪公式以及兩角和的正弦公式化簡表達(dá)式,使之成為的形式,利用
計(jì)算周期,再利用
的函數(shù)圖象解不等式,求出單調(diào)遞增區(qū)間;第二問,將已知x的取值范圍代入表達(dá)式,結(jié)合圖象,求三角函數(shù)的最值.
試題解析:.
(Ⅰ)的最小正周期為
令,解得
,
所以函數(shù)的單調(diào)增區(qū)間為
.
(Ⅱ)因?yàn)?/span>,所以
,所以
,
于是 ,所以
.
當(dāng)且僅當(dāng)時(shí)
取最小值
當(dāng)且僅當(dāng),即
時(shí)最大值
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1, ,
,過動點(diǎn)A作
,垂足D在線段BC上且異于點(diǎn)B,連接AB,沿
將△
折起,使
(如圖2所示).
(1)當(dāng)的長為多少時(shí),三棱錐
的體積最大;
(2)當(dāng)三棱錐的體積最大時(shí),設(shè)點(diǎn)
,
分別為棱
,
的中點(diǎn),試在棱
上確定一點(diǎn)
,使得
,并求
與平面
所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)若存在極值點(diǎn)1,求
的值;
(2)若存在兩個(gè)不同的零點(diǎn),求證:
(
為自然對數(shù)的底數(shù),
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】
極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為
軸的正半軸,兩神坐標(biāo)系中的長度單位相同.已知曲線
的極坐標(biāo)方程為
,
.
(Ⅰ)求曲線的直角坐標(biāo)方程;
(Ⅱ)在曲線上求一點(diǎn),使它到直線
:
(
為參數(shù))的距離最短,寫出
點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(
,
).
(1)如果曲線在點(diǎn)
處的切線方程為
,求
,
的值;
(2)若,
,關(guān)于
的不等式
的整數(shù)解有且只有一個(gè),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列是首項(xiàng)與公比均為
的等比數(shù)列(
,且
),數(shù)列
滿足
.
(1)求數(shù)列的前
項(xiàng)和
;
(2)若對一切都有
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x2-ax+a)e-x,a∈R
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)g(x)=f’(x),其中f’(x)為函數(shù)f(x)的導(dǎo)函數(shù).判斷g(x)在定義域內(nèi)是否為單調(diào)函數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}各項(xiàng)均為正數(shù),其前n項(xiàng)和為Sn,且a1=1,anan+1=2Sn.(n∈N*)
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{n·}的前n項(xiàng)和Tn.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com