【題目】如圖1, , ,過(guò)動(dòng)點(diǎn)A作,垂足D在線段BC上且異于點(diǎn)B,連接AB,沿將△折起,使(如圖2所示).
(1)當(dāng)的長(zhǎng)為多少時(shí),三棱錐的體積最大;
(2)當(dāng)三棱錐的體積最大時(shí),設(shè)點(diǎn), 分別為棱, 的中點(diǎn),試在棱上確定一點(diǎn),使得 ,并求與平面所成角的大。
【答案】(1)時(shí),三棱錐的體積最大.(2)當(dāng)時(shí), . 與平面所成角的大小.
【解析】試題分析:(1)設(shè),則.又,所以.由此易將三棱錐的體積表示為的函數(shù),通過(guò)求函數(shù)的最值的方法可求得它的最大值.
(2)沿將△折起后, 兩兩互相垂直,故可以為原點(diǎn),建立空間直角坐標(biāo)系,利用空間向量即可找到點(diǎn)N的位置,并求得與平面所成角的大。
試題解析:(1)解法1:在如圖1所示的△中,設(shè),則.
由, 知,△為等腰直角三角形,所以.
由折起前知,折起后(如圖2),, ,且,
所以平面.又,所以.于是
,
當(dāng)且僅當(dāng),即時(shí),等號(hào)成立,
故當(dāng),即時(shí),三棱錐的體積最大.
解法2:同解法1,得.
令,由,且,解得.
當(dāng)時(shí), ;當(dāng)時(shí), .
所以當(dāng)時(shí), 取得最大值.
故當(dāng)時(shí),三棱錐的體積最大.
(2)以為原點(diǎn),建立如圖a所示的空間直角坐標(biāo)系.
由(1)知,當(dāng)三棱錐的體積最大時(shí), , .
于是可得, , , , , ,
且.
設(shè),則.因?yàn)?/span>等價(jià)于,即
,故, .
所以當(dāng)(即是的靠近點(diǎn)的一個(gè)四等分點(diǎn))時(shí), .
設(shè)平面的一個(gè)法向量為,由及,
得可取.
設(shè)與平面所成角的大小為,則由, ,可得
,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),則(ⅰ)____________.
(ⅱ)給出下列三個(gè)命題:①函數(shù)是偶函數(shù);②存在,使得以點(diǎn)為頂點(diǎn)的三角形是等腰三角形;③存在,使得以點(diǎn)為頂點(diǎn)的四邊形為菱形.
其中,所有真命題的序號(hào)是____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),我國(guó)“霧霾天氣”頻發(fā),嚴(yán)重影響人們的身體健康.根據(jù)空氣質(zhì)量指數(shù)API(為整數(shù))的不同,可將空氣質(zhì)量分級(jí)如下表:
API | 0~50 | 51~100 | 101~150 | 151~200 | 201~250 | 251~300 | >300 |
級(jí)別 | Ⅰ | Ⅱ | Ⅲ1 | Ⅲ2 | Ⅳ1 | Ⅳ2 | Ⅴ |
狀況 | 優(yōu) | 良 | 輕微污染 | 輕度污染 | 中度污染 | 中度重污染 | 重度污染 |
對(duì)某城市一年(365天)的空氣質(zhì)量進(jìn)行監(jiān)測(cè),獲得的API數(shù)據(jù)按照區(qū)間[0,50],(50,100],(100,150],(150,200],(200,250],(250,300]進(jìn)行分組,得到頻率分布直方圖如圖.
(1)求頻率分布直方圖中x的值;
(2)計(jì)算一年中空氣質(zhì)量分別為良和輕微污染的天數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù).
(1)當(dāng)時(shí),求不等式的解集;
(2)若函數(shù)的值域?yàn)?/span>,且,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,為正三角形,,,,平面.
(Ⅰ)點(diǎn)在棱上,試確定點(diǎn)的位置,使得平面;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校高一年級(jí)開(kāi)設(shè)、、、、五門(mén)選修課,每位同學(xué)須彼此獨(dú)立地選三課程,其中甲同學(xué)必選課程,不選課程,另從其余課程中隨機(jī)任選兩門(mén)課程.乙、丙兩名同學(xué)從五門(mén)課程中隨機(jī)任選三門(mén)課程.
(Ⅰ)求甲同學(xué)選中課程且乙同學(xué)未選中課程的概率.
(Ⅱ)用表示甲、乙、丙選中課程的人數(shù)之和,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),若存在,使得,求實(shí)數(shù)的取值范圍;
(2)若為正整數(shù),方程的兩個(gè)實(shí)數(shù)根滿足,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分13分)已知函數(shù),.
(Ⅰ)求函數(shù)的最小正周期與單調(diào)增區(qū)間;
(Ⅱ)求函數(shù)在上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,點(diǎn),點(diǎn)是圓上任意一點(diǎn),線段的垂直平分線交于點(diǎn),設(shè)動(dòng)點(diǎn)的軌跡為.
(Ⅰ)求的方程;
(Ⅱ)設(shè)直線與軌跡交于兩點(diǎn), 為坐標(biāo)原點(diǎn),若的重心恰好在圓上,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com