【題目】已知函數(shù)f(x)= ,其中a>0.
(Ⅰ)若a=1,求曲線y=f(x)在點(2,f(2))處的切線方程;
(Ⅱ)若在區(qū)間上,f(x)>0恒成立,求a的取值范圍.
【答案】⑴y="6x-9(2)" 0<a<5
【解析】試題分析:(1)利用導數(shù)求切線斜率即可;
(2)在區(qū)間上, 恒成立恒成立,令,解得或,以下分兩種情況, 討論,分類求出函數(shù)最大值即可.
試題解析:(1)當a=1時,f(x)=x3-x2+1,f(2)=3;f' (x)=3x2-3x, f' (2)=6.
所以曲線y=f(x) 在點(2,f(2))處的切線方程y-3=6(x-2),即y=6x-9.
(2)f' (x)=3ax2-3x=3x(ax-1),令f' (x)=0,解得x=0或x=.
以下分兩種情況討論:
①若0<a≤2,則≥,當x變化時,f' (x),f(x)的變化情況如下表:
x | (-,0) | 0 | (0,) |
f' (x) | + | 0 | - |
f(x) | 遞增 | 極大值 | 遞減 |
當x[-,]上,f(x)>0等價于,即解不等式組得-5<a<5.因此0<a≤2.
②若a>2,則0<<,當x變化時,f' (x),f(x)的變化情況如下表:
X | (-,0) | 0 | (0,) | (,) | |
f' (x) | + | 0 | - | 0 | + |
f'(x) | 遞增 | 極大值 | 遞減 | 極小值 | 遞增 |
當x[-,]上,f(x)>0等價于,即解不等式組得<a<5,或a<-.因此2<a<5. 綜合①和②,可知a的取值范圍為0<a<5.
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的各項均為正數(shù),記數(shù)列{an}的前n項和為Sn,數(shù)列{an2}的前n項和為Tn,且3Tn=Sn2+2Sn,n∈N*.
(Ⅰ)求a1的值;
(Ⅱ)求數(shù)列{an}的通項公式;
(Ⅲ)若k,t∈N*,且S1,Sk-S1,St-Sk成等比數(shù)列,求k和t的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,將邊長為2的正六邊形ABCDEF沿對角線BE翻折,連接AC、FD,形成如圖所示的多面體,且,(1)證明:平面ABEF平面BCDE; (2)求DE與平面ABC所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中, , , 的面積為.
(Ⅰ)求的長;
(Ⅱ)若函數(shù)的圖象經(jīng)過三點,其中為的圖象與軸相鄰的兩個交點,求函數(shù)的解析式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), .
(1)當時,求函數(shù)的最小值;
(2)當時,討論函數(shù)的單調(diào)性;
(3)是否存在實數(shù),對任意的, ,且,有恒成立,若存在求出的取值范圍,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= ,其中a>0.
(Ⅰ)若a=1,求曲線y=f(x)在點(2,f(2))處的切線方程;
(Ⅱ)若在區(qū)間上,f(x)>0恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知(x+ )n展開式的二項式系數(shù)之和為256
(1)求n;
(2)若展開式中常數(shù)項為 ,求m的值;
(3)若展開式中系數(shù)最大項只有第6項和第7項,求m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題p:“存在 ”,命題q:“曲線 表示焦點在x軸上的橢圓”,命題s:“曲線 表示雙曲線”
(1)若“p且q”是真命題,求m的取值范圍;
(2)若q是s的必要不充分條件,求t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com