20.若隨機變量X服從正態(tài)分布N(μ,σ2)(σ>0),則P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974,已知某隨機變量Y近似服從正態(tài)分布N(2,σ2),若P(Y>3)=0.1587,則P(Y<0)=(  )
A.0.0013B.0.0228C.0.1587D.0.5

分析 根據(jù)3σ原則,即可得出結(jié)論.

解答 解:∵P(Y>3)=0.1587,P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,
∴P(Y<0)=$\frac{1}{2}$(1-0.9544)=0.0228,
故選B.

點評 本題考查正態(tài)分布曲線的特點及曲線所表示的意義,考查正態(tài)分布中兩個量μ和σ的應(yīng)用,考查曲線的對稱性,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{6}}{3}$,短軸長為2$\sqrt{2}$,右焦點為F.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若直線l過點M(3,t)且與橢圓C有且僅有一個公共點P,過點P作直線PF交橢圓于另一個點Q.
①證明:當直線OM與直線PQ的斜率kOM,kPQ均存在時,kOMkPQ為定值;
②求△PQM面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在平面直角坐標系XOY中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2+3cosα}\\{y=1+3sinα}\end{array}\right.$(α為參數(shù)),在以原點為極點,x軸正半軸為極坐標系中,直線l的極坐標方程為ρsin(θ-$\frac{π}{4}$)=$\sqrt{2}$
(1)求C的普通方程和l的傾斜角;
(2)設(shè)點M(0,2),l與C交于A、B兩點,且AB的中點為N,求|MN|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2},x≤0}\\{xlnx,x>0}\end{array}\right.$,則f(f(-e))=2e2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=(2-a)(x-1)-2lnx,a∈R.
(Ⅰ)若a=1,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)若不等式f(x)>0在區(qū)間(0,$\frac{1}{2}$)上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.設(shè)M是△ABC邊BC上的任意一點,$\overrightarrow{AN}$=$\frac{1}{3}\overrightarrow{NM}$,若$\overrightarrow{AN}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,則λ+μ=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知復(fù)數(shù)z1=3+4i,z2=t-i,且z1•$\overline{{z}_{2}}$是實數(shù),則實數(shù)t=( 。
A.$\frac{3}{4}$B.$\frac{4}{3}$C.-$\frac{4}{3}$D.-$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知數(shù)列{an}為等差數(shù)列,且a1=5,a2=9,數(shù)列{bn}的前n項和Sn=$\frac{2}{3}$bn+$\frac{1}{3}$.
(Ⅰ)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)設(shè)cn=an|bn|,求數(shù)列{cn}的前n項的和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知拋物線x2=2y的焦點與橢圓$\frac{{y}^{2}}{m}$+$\frac{{x}^{2}}{2}$=1的一個焦點重合,則m=( 。
A.1B.2C.3D.$\frac{9}{4}$

查看答案和解析>>

同步練習冊答案