分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),計(jì)算f(1),f′(1)的值,求出切線方程即可;
(Ⅱ)問(wèn)題轉(zhuǎn)化為a>2-$\frac{2lnx}{x-1}$在(0,$\frac{1}{2}$)恒成立,令h(x)=2-$\frac{2lnx}{x-1}$,x∈(0,$\frac{1}{2}$),根據(jù)函數(shù)的單調(diào)性求出a的范圍即可.
解答 解:(Ⅰ)a=1時(shí),f(x)=x-1-2lnx,f′(x)=1-$\frac{2}{x}$,
故f(1)=0,f′(1)=-1,
故切線方程是:y=-(x-1),
即x+y-1=0.
(Ⅱ)若不等式f(x)>0在區(qū)間(0,$\frac{1}{2}$)上恒成立,
即a>2-$\frac{2lnx}{x-1}$在(0,$\frac{1}{2}$)恒成立,
令h(x)=2-$\frac{2lnx}{x-1}$,x∈(0,$\frac{1}{2}$),
則h′(x)=-2•$\frac{1-\frac{1}{x}-lnx}{{(x-1)}^{2}}$,
令m(x)=1-$\frac{1}{x}$-lnx,x∈(0,$\frac{1}{2}$),
則m′(x)=$\frac{1-x}{{x}^{2}}$>0,m(x)在(0,$\frac{1}{2}$)遞增,
故m(x)<m($\frac{1}{2}$)=-1+ln2<0,
故h′(x)>0,h(x)在(0,$\frac{1}{2}$)遞增,
h(x)<h($\frac{1}{2}$)=2-4ln2,
故a>2-4ln2.
點(diǎn)評(píng) 本題考查了切線方程問(wèn)題,考查函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x2=16y | B. | x2=8y | C. | x2=-16y | D. | x2=-8y |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1-i | B. | 1+i | C. | -1-i | D. | -1+i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x2=8y | B. | x2=4y | C. | x2=2y | D. | x2=y |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0.0013 | B. | 0.0228 | C. | 0.1587 | D. | 0.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{8\sqrt{3}}{9}$ | B. | $\frac{16\sqrt{3}}{9}$ | C. | $\frac{32\sqrt{3}}{9}$ | D. | $\frac{64\sqrt{3}}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com