分析 由題意設(shè)公共根是b,代入兩方程,作差可得b=a,即公共根就是a,進一步代入原方程求解兩集合得答案.
解答 解:∵A∩B≠∅,∴兩個方程有公共根,
設(shè)公共根是b,
則b2+(2a-3)b-3a=0,b2+(a-3)b+a2-3a=0,
兩式相減得:ab-a2=0,即a(b-a)=0.
若a=0,則兩個方程都是x2-3x=0,與A≠B矛盾;
∴a≠0,則b=a,
∴公共根就是a,
代入x2+(2a-3)x-3a=0,得a2+a(2a-3)-3a=0,
即a2-2a=0,解得a=0(舍),a=2.
∴A={x|x2+x-6=0}={-3,2},
B={x|x2-x-2=0}={-1,2},
∴A∪B={2,-3,-1}.
點評 本題考查交集及其運算,考查數(shù)學(xué)轉(zhuǎn)化思想方法,體現(xiàn)了分類討論的數(shù)學(xué)思想方法,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x∈(0,π),使sinx=tanx | |
B. | “對任意的x∈R,x2+x+1>0”的否定是“存在x0∈R,x02+x0+1<0” | |
C. | ?θ∈R,函數(shù)f(x)=sin(2x+θ)都不是偶函數(shù) | |
D. | △ABC中,“sinA+sinB=cosA+cosB”是“C=$\frac{π}{2}$”的充要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 是三個向量的數(shù)量積 | B. | 是與$\overrightarrow{a}$共線的向量 | ||
C. | 是與$\overrightarrow{c}$共線的向量 | D. | 無意義 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x>6與x(x-3)2>6(x-3)2 | B. | $\sqrt{2x+1}$(x-2)≥0與x≥2 | ||
C. | x2-3x+3+$\frac{1}{x-3}$>$\frac{x-2}{x-3}$與x2-3x+2>0 | D. | $\frac{x-2}{(x+1)^{2}(x-1)}$>0與x2-3x+2>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>c>b | B. | a>b>c | C. | b>a>c | D. | b>c>a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com