20.已知sin(π-α)-cos(π-α)=$\frac{\sqrt{2}}{3}$($\frac{π}{2}$<α<π).求下列各式的值:
(1)sinα•cosα;
(2)sinα-cosα.

分析 (1)把sinα+cosα=$\frac{\sqrt{2}}{3}$兩邊同時(shí)平方,利用同角三角函數(shù)關(guān)系式能求出sinαcosα.
(2)先求出sinα>0,cosα<0,再求出(sinα-cosα)2,由此能求出sinα-cosα.

解答 解:(1)sin(π-α)-cos(π-α)=sinα+cosα=$\frac{\sqrt{2}}{3}$,($\frac{π}{2}$<α<π),
∴(sinα+cosα)2=1+2sinαcosα=$\frac{2}{9}$,
∴sinαcosα=-$\frac{7}{18}$,
(2)∵$\frac{π}{2}$<α<π,
∴sinα>0,cosα<0,
∴sinα-cosα>0,
∴(sinα-cosα)2=1-2sinαcosα=1+$\frac{2}{9}$=$\frac{11}{9}$,
∴sinα-cosα=$\frac{\sqrt{11}}{3}$.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,解題時(shí)要認(rèn)真審題,注意同角三角函數(shù)關(guān)系式、完全平方式的合理運(yùn)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知向量$\overrightarrow{a}$=(x,3),$\overrightarrow$=(-1,y-1),且$\overrightarrow{a}$+2$\overrightarrow$=(0,1),則|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.不等式(x+2)${\;}^{-\frac{5}{3}}$>(1-2x)${\;}^{-\frac{5}{3}}$的解集為($-2,-\frac{1}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知A={x|-2≤x≤2}.B={x|sinx=a}.
(1)當(dāng)a=1時(shí).求A∩B:
(2)若B⊆A恒成立.求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)A={x|x2+(2a-3)x-3a=0},B={x|x2+(a-3)x+a2-3a=0},若A≠B,A∩B≠∅,試求A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}的各項(xiàng)均為正數(shù),a1=1,an+1-an=ak(k∈{1,2,…,n})
(Ⅰ)求證:an+1-an≥1;
(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,求證:$\frac{1}{2}$n(n+1)≤Sn≤2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(重點(diǎn)中學(xué)做)如圖所示,設(shè)A,B分別是橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右頂點(diǎn)和上頂點(diǎn),過原點(diǎn)O作直線交線段AB于點(diǎn)M(異于點(diǎn)A,B),交橢圓于C,D兩點(diǎn)(點(diǎn)C在第一象限內(nèi)),△ABC與△ABD的面積分別為S1與S2
(1)若M是線段AB的中點(diǎn),直線OM的方程為y=$\frac{\sqrt{3}}{3}$x,點(diǎn)P(3,1)在橢圓E上,求橢圓E的方程;
(2)當(dāng)點(diǎn)M在線段AB上運(yùn)動(dòng)時(shí),求$\frac{{S}_{1}}{{S}_{2}}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知圓C:x2+y2-2y-1=0,直線l:y=x+m,則C的圓心坐標(biāo)為(0,1),若l與C相切,則m=-1或3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若f(x)在R上可導(dǎo),f(x)=x2+2f′(2)x+3,則f(-1)=12.

查看答案和解析>>

同步練習(xí)冊(cè)答案