【題目】海水養(yǎng)殖場(chǎng)進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對(duì)比,收獲時(shí)各隨機(jī)抽取了個(gè)網(wǎng)箱,測(cè)量各水箱產(chǎn)品的產(chǎn)量(單位:kg),其頻率分布直方圖如下圖所示.

1)若用頻率視為概率,記表示事件舊養(yǎng)殖法的箱產(chǎn)量低于kg,求事件的概率;

2)填寫(xiě)以下列聯(lián)表,并根據(jù)此判斷是否有的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān)?

箱產(chǎn)量kg

箱產(chǎn)量kg

合計(jì)

舊養(yǎng)殖方法

新養(yǎng)殖方法

合計(jì)

3)根據(jù)箱產(chǎn)量頻率分布直方圖,求新養(yǎng)殖法箱產(chǎn)量的中位數(shù)的估計(jì)值(精確到

【答案】1;(2列聯(lián)表見(jiàn)解析,有的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān);(3.

【解析】

1)根據(jù)頻率分布直方圖可得所求的概率(即頻率).

2)根據(jù)新舊養(yǎng)殖法對(duì)應(yīng)的頻率分布直方圖可得各自大于等于的箱數(shù)和小于的箱數(shù),據(jù)此可完成列聯(lián)表,再根據(jù)公式計(jì)算并與臨界值比較大小,從而能判斷是否有的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān).

3)利用頻率分布直方圖可計(jì)算新養(yǎng)殖法箱產(chǎn)量的中位數(shù).

1)根據(jù)舊養(yǎng)殖法的頻率分布直方圖得,

.

2)由(1)的計(jì)算可知:

舊養(yǎng)殖法中,小于的箱數(shù)為箱,大于或等于的箱數(shù)為箱.

表示事件新養(yǎng)殖法的箱產(chǎn)量低于kg,

,

所以新養(yǎng)殖法中,小于的箱數(shù)為箱,大于或等于的箱數(shù)為箱.

列聯(lián)表如下圖所示,

箱產(chǎn)量kg

箱產(chǎn)量kg

合計(jì)

舊養(yǎng)殖方法

100

新養(yǎng)殖方法

100

合計(jì)

96

104

200

所以,

因?yàn)?/span>,

故有的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān).

3)新養(yǎng)殖法箱產(chǎn)量的中位數(shù)為.

由新養(yǎng)殖法的頻率分布直方圖可知前三組的頻率之和為:,

前四組的頻率之和為:

故中位數(shù)滿(mǎn)足,解得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)P的極坐標(biāo)為,直線l的極坐標(biāo)方程為ρcosa,且點(diǎn)P在直線l.

1)求a的值及直線l的直角坐標(biāo)方程;

2)曲線的極坐標(biāo)方程為.交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】第七屆世界軍人運(yùn)動(dòng)會(huì)于20191018日至20191027日在中國(guó)武漢舉行,第七屆世界軍人運(yùn)動(dòng)會(huì)是我國(guó)第一次承辦的綜合性國(guó)際軍事體育賽事,也是繼北京奧運(yùn)會(huì)之后我國(guó)舉辦的規(guī)模最大的國(guó)際體育盛會(huì).來(lái)自109個(gè)國(guó)家的9300余名軍體健兒在江城武漢同場(chǎng)競(jìng)技、增進(jìn)友誼.運(yùn)動(dòng)會(huì)共設(shè)置射擊、游泳、田徑、籃球等27個(gè)大項(xiàng)、329個(gè)小項(xiàng).經(jīng)過(guò)激烈角逐,獎(jiǎng)牌榜的前6名如下:

某大學(xué)德語(yǔ)系同學(xué)利用分層抽樣的方式從德國(guó)獲獎(jiǎng)選手中抽取了9名獲獎(jiǎng)代表.

國(guó)家

金牌

銀牌

銅牌

獎(jiǎng)牌總數(shù)

中國(guó)

133

64

42

239

俄羅斯

51

53

57

161

巴西

21

31

36

88

法國(guó)

13

20

24

57

波蘭

11

15

34

60

德國(guó)

10

15

20

45

1)請(qǐng)問(wèn)這9名獲獎(jiǎng)代表中獲金牌、銀牌、銅牌的人數(shù)分別是多少人?

2)從這9人中隨機(jī)抽取3人,記這3人中銀牌選手的人數(shù)為,求的分布列和期望;

3)從這9人中隨機(jī)抽取3人,求已知這3人中有獲金牌運(yùn)動(dòng)員的前提下,這3人中恰好有1人為獲銅牌運(yùn)動(dòng)員的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形中,分別在上,且,沿 將四邊形折成四邊形,使點(diǎn)在平面上的射影在直線

(1)求證:平面平面

(2)求證:平面;

(3)求二面角的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線經(jīng)過(guò)點(diǎn),過(guò)A作兩條不同直線,其中直線關(guān)于直線對(duì)稱(chēng).

1)求拋物線E的方程及其準(zhǔn)線方程;

2)設(shè)直線分別交拋物線E兩點(diǎn)(均不與A重合),若以線段為直徑的圓與拋物線E的準(zhǔn)線相切,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方體的棱長(zhǎng)為,點(diǎn)分別棱樓的中點(diǎn),下列結(jié)論中正確的是(

A.四面體的體積等于B.平面

C.平面D.異面直線所成角的正切值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)fx=ax2–a–lnx,gx=,其中a∈Re=2.718…為自然對(duì)數(shù)的底數(shù).

)討論fx)的單調(diào)性;

)證明:當(dāng)x1時(shí),gx)>0;

)確定a的所有可能取值,使得fx)>gx)在區(qū)間(1+∞)內(nèi)恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】唐詩(shī)是中國(guó)文學(xué)的瑰寶.為了研究計(jì)算機(jī)上唐詩(shī)分類(lèi)工作中檢索關(guān)鍵字的選取,某研究人員將唐詩(shī)分成7大類(lèi)別,并從《全唐詩(shī)》48900多篇唐詩(shī)中隨機(jī)抽取了500篇,統(tǒng)計(jì)了每個(gè)類(lèi)別及各類(lèi)別包含“花”、“山”、“簾”字的篇數(shù),得到下表:

愛(ài)情婚姻

詠史懷古

邊塞戰(zhàn)爭(zhēng)

山水田園

交游送別

羈旅思鄉(xiāng)

其他

總計(jì)

篇數(shù)

100

64

55

99

91

73

18

500

含“山”字的篇數(shù)

51

48

21

69

48

30

4

271

含“簾”字的篇數(shù)

21

2

0

0

7

3

5

38

含“花”字的篇數(shù)

60

6

14

17

32

28

3

160

1)根據(jù)上表判斷,若從《全唐詩(shī)》含“山”字的唐詩(shī)中隨機(jī)抽取一篇,則它屬于哪個(gè)類(lèi)別的可能性最大,屬于哪個(gè)類(lèi)別的可能性最小,并分別估計(jì)該唐詩(shī)屬于這兩個(gè)類(lèi)別的概率;

2)已知檢索關(guān)鍵字的選取規(guī)則為:

①若有超過(guò)95%的把握判斷“某字”與“某類(lèi)別”有關(guān)系,則“某字”為“某類(lèi)別”的關(guān)鍵字;

②若“某字”被選為“某類(lèi)別”關(guān)鍵字,則由其對(duì)應(yīng)列聯(lián)表得到的的觀測(cè)值越大,排名就越靠前;

設(shè)“山”“簾”“花”和“愛(ài)情婚姻”對(duì)應(yīng)的觀測(cè)值分別為,.已知,,請(qǐng)完成下面列聯(lián)表,并從上述三個(gè)字中選出“愛(ài)情婚姻”類(lèi)別的關(guān)鍵字并排名.

屬于“愛(ài)情婚姻”類(lèi)

不屬于“愛(ài)情婚姻”類(lèi)

總計(jì)

含“花”字的篇數(shù)

不含“花”的篇數(shù)

總計(jì)

附:,其中.

0.05

0.025

0.010

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面是正方形,平面,的中點(diǎn).

(1)求證:平面;

(2)證明:平面平面.

查看答案和解析>>

同步練習(xí)冊(cè)答案