分析 (Ⅰ)依題意,當(dāng)n≥2時,由2an=2Sn-2Sn-1可得)an=1-n(n≥2),再檢驗n=1時,是否適合,以確定是分是合,從而可得數(shù)列{an}的通項公式;
(Ⅱ)由$\frac{2}{(1-{a}_{n})(1-{a}_{n+2})}=\frac{2}{n(n+2)}=\frac{1}{n}-\frac{1}{n+2}$可得T2n=(b1+b3+…+b2n-1)+(b2+b4+…+b2n),分組求和即可.
解答 解:(Ⅰ)當(dāng)n≥2時,$2{a_n}=2{S_n}-2{S_{n-1}}=n-{n^2}-[(n-1)-{(n-1)^2}]=2-2n$--------(2分)
即:an=1-n(n≥2),-------------------------------------------------------------(3分)
當(dāng)n=1時,由$2{S_1}=1-{1^2}$得a1=0,-----------------------------------------------(4分)
顯然當(dāng)n=1時上式也適合,
∴an=1-n.--------------------------------------------------------------------(5分)
(Ⅱ)∵$\frac{2}{{(1-{a_n})(1-{a_{n+2}})}}=\frac{2}{n(n+2)}=\frac{1}{n}-\frac{1}{n+2}$,------------------------------------(6分)
∴T2n=(b1+b3+…+b2n-1)+(b2+b4+…+b2n)-------------------------------------(7分)
=$({2^0}+{2^{-2}}+…+{2^{2-2n}})+[(\frac{1}{2}-\frac{1}{4})+(\frac{1}{4}-\frac{1}{6})+…+(\frac{1}{2n}-\frac{1}{2n+2})$]---------------------(9分)
=$\frac{{1-{{(\frac{1}{4})}^n}}}{{1-\frac{1}{4}}}+\frac{1}{2}-\frac{1}{2n+2}$---------------------------------------------------------(11分)
=$\frac{11}{6}-\frac{4}{3}•{(\frac{1}{4})^n}-\frac{1}{2n+2}$.-------------------------------------------------------(12分)
點評 本題考查數(shù)列的求和,著重考查數(shù)列遞推式的應(yīng)用,考查裂項法、公式法與分組求和法的綜合應(yīng)用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{6}}{3}$ | B. | 2 | C. | $\frac{\sqrt{6}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=±$\frac{1}{4}$x | B. | y=±$\frac{1}{2}$x | C. | y=±4x | D. | y=±2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com