分析 先對函數(shù)式裂項得$f(x)=\frac{{{x^2}-6x-3}}{x+1}$=(x+1)+$\frac{4}{x+1}$-8,再用基本不等式對函數(shù)求最值.
解答 解:$f(x)=\frac{{{x^2}-6x-3}}{x+1}$=$\frac{(x+1)^2-8(x+1)+4}{x+1}$
=(x+1)+$\frac{4}{x+1}$-8,
因為,x∈[0,1],所以,x+1∈[1,2],
因此,(x+1)+$\frac{4}{x+1}$≥2•$\sqrt{(x+1)•\frac{4}{x+1}}$=4,
當(dāng)且僅當(dāng),x+1=2,即x=1時,取“=”,
所以,f(x)min=f(1)=-4,
故答案為:-4.
點評 本題主要考查了基本不等式在求函數(shù)最值中的應(yīng)用,以及取等條件的分析,考查了對分式“裂項”的運算技巧,屬于中檔題.
科目:高中數(shù)學(xué) 來源:2017屆湖北襄陽四中高三七月周考三數(shù)學(xué)(理)試卷(解析版) 題型:填空題
記數(shù)列的前和為,若是公差為的等差數(shù)列,則為等差數(shù)列時,的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com