3.函數(shù)f(x)=sin4x+acos4x圖象的一條對稱軸方程是直線x=$\frac{π}{6}$,則a=(  )
A.1B.$\frac{\sqrt{3}}{3}$C.-$\frac{\sqrt{3}}{3}$D.$\sqrt{3}$

分析 利用輔助角公式化積為f(x)=$\sqrt{{a}^{2}+1}sin(4x+θ)$,(tanθ=a),把x=$\frac{π}{6}$代入,可得4×$\frac{π}{6}$+θ=k$π+\frac{π}{2}$,k∈Z,求出θ值,則a可求.

解答 解:f(x)=sin4x+acos4x=$\sqrt{{a}^{2}+1}$($\frac{1}{\sqrt{{a}^{2}+1}}sin4x+\frac{a}{\sqrt{{a}^{2}+1}}cos4x$)
=$\sqrt{{a}^{2}+1}sin(4x+θ)$,(tanθ=a),
∵函數(shù)f(x)=sin4x+acos4x圖象的一條對稱軸方程是直線x=$\frac{π}{6}$,
∴4×$\frac{π}{6}$+θ=k$π+\frac{π}{2}$,k∈Z,則θ=kπ-$\frac{π}{6}$,k∈Z.
∴a=tan(kπ-$\frac{π}{6}$)=-tan$\frac{π}{6}$=-$\frac{\sqrt{3}}{3}$.
故選:C.

點評 本題考查兩角和與差的正弦函數(shù),考查了y=Asin(ωx+φ)型函數(shù)的圖象與性質(zhì),是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=|x+1|+2|x-a2|(a∈R).
(1)若函數(shù)f(x)的最小值為3,求a的值:
(2)在(1)的條件下,若直線y=m與函數(shù)y=f(x)的圖象圍成一個三角形,求m的范圍,并求圍成的三角形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.利用計算機隨機模擬方法計算y=4x2與y=4所圍成的區(qū)域Ω的面積時,可以先運行以下算法步驟:
第一步:利用計算機產(chǎn)生兩個在[0,1]區(qū)間內(nèi)的均勻隨機數(shù)a,b;
第二步:對隨機數(shù)a,b實施變換:$\left\{\begin{array}{l}{{a}_{1}=2a-1}\\{_{1}=4b}\end{array}\right.$,得到點A(a1,b1);
第三步:判斷點A(a1,b1)的坐標是否滿足b1<4${a}_{1}^{2}$;
第四步:累計所產(chǎn)生的點A的個數(shù)m,及滿足b1<4${a}_{1}^{2}$的點A的個數(shù)n;
第五步:判斷m是否小于M(一個設(shè)定的數(shù)).若是,則回到第一步,否則,輸出n并終止算法.
若設(shè)定的M=150,且輸出的n=51,則據(jù)此用隨機模擬方法可以估計出區(qū)域Ω的面積為$\frac{132}{25}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x≤0}\\{x-y≤0}\\{2x-y+1≥0}\end{array}\right.$,則目標函數(shù)z=xy的取值范圍為[-$\frac{1}{8}$,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知f(x)=$\frac{1}{4}$sin(πx-$\frac{π}{4}$)cos(πx-$\frac{π}{4}$)+$\frac{\sqrt{3}}{4}$cos2(πx-$\frac{π}{4}$)-$\frac{\sqrt{3}}{8}$.
(Ⅰ)求y=f(x)的單調(diào)減區(qū)間及對稱軸方程;
(Ⅱ)若函數(shù)y=f(x)-m在區(qū)間[0,$\frac{1}{2}$]上恰好有兩個零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.計算下列各值:(不用計算器,寫出必要的過程)
(1)sin(arcsin$\frac{1}{2}$+arcsin$\frac{\sqrt{3}}{2}$);
(2)sin[arcsin$\frac{12}{13}$-arcsin(-$\frac{3}{5}$)];
(3)sin(π-2arcsin$\frac{4}{5}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知函數(shù)f(x)(x∈R),滿足f(-x)=-f(x),f(3-x)=f(x),則f(435)=( 。
A.0B.3C.-3D.不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.1+a1+a2+…+an的值是( 。
A.$\frac{1-{a}^{n}}{1-a}$B.$\frac{1-{a}^{n+1}}{1-a}$C.1+n或$\frac{1-{a}^{n}}{1-a}$D.1+n或$\frac{1-{a}^{n+1}}{1-a}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知△ABC中,AB=8,A=30°且△ABC的面積為16,則邊AC的長為8.

查看答案和解析>>

同步練習冊答案