8.計(jì)算下列各值:(不用計(jì)算器,寫出必要的過(guò)程)
(1)sin(arcsin$\frac{1}{2}$+arcsin$\frac{\sqrt{3}}{2}$);
(2)sin[arcsin$\frac{12}{13}$-arcsin(-$\frac{3}{5}$)];
(3)sin(π-2arcsin$\frac{4}{5}$)

分析 由條件利用反正弦函數(shù)的定義,兩角和差的三角公式,求得所給式子的值.

解答 解:(1)∵arcsin$\frac{1}{2}$=$\frac{π}{6}$,arcsin$\frac{\sqrt{3}}{2}$=$\frac{π}{3}$,
∴sin(arcsin$\frac{1}{2}$+arcsin$\frac{\sqrt{3}}{2}$)=sin($\frac{π}{6}$+$\frac{π}{3}$)=sin$\frac{π}{2}$=1.
(2)sin[arcsin$\frac{12}{13}$-arcsin(-$\frac{3}{5}$)]
=sin(arcsin$\frac{12}{13}$)cos[arcsin(-$\frac{3}{5}$)]-cos(arcsin$\frac{12}{13}$)sin[arcsin(-$\frac{3}{5}$)]
=$\frac{12}{13}$•$\frac{4}{5}$-$\frac{5}{13}$•(-$\frac{3}{5}$)=$\frac{63}{65}$.
(3)sin(π-2arcsin$\frac{4}{5}$)=sin (2arcsin$\frac{4}{5}$)=2sin(arcsin$\frac{4}{5}$)cos(arcsin$\frac{4}{5}$)
=2•$\frac{4}{5}$•$\frac{3}{5}$=$\frac{24}{25}$.

點(diǎn)評(píng) 本題主要考查反正弦函數(shù)的定義,兩角和差的三角公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若兩條異面直線所成的角為90°,則稱這對(duì)異面直線為“理想異面直線對(duì)”,在正方體所有棱所在的直線中,“理想異面直線對(duì)”的對(duì)數(shù)為(  )
A.12B.24C.48D.96

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.函數(shù)f(x)=$\sqrt{3}$x-$\sqrt{16-{x}^{2}}$的值域?yàn)閇-8,$4\sqrt{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.過(guò)直線x-y-3=0與2x-y-5=0的交點(diǎn),且與向量$\overrightarrow{n}$=(1,-3)垂直的直線方程是(  )
A.x-3y-5=0B.3x+y-5=0C.x+3y-5=0D.x-y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)f(x)=sin4x+acos4x圖象的一條對(duì)稱軸方程是直線x=$\frac{π}{6}$,則a=( 。
A.1B.$\frac{\sqrt{3}}{3}$C.-$\frac{\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知向量$\overrightarrow{a}$=(x,2),$\overrightarrow$=(2,x),若$\overrightarrow{a}$+2$\overrightarrow$與2$\overrightarrow{a}$+$\overrightarrow$夾角為$\frac{π}{2}$,則|$\overrightarrow{a}$-$\overrightarrow$|=6$\sqrt{2}$或3$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知cos(α-$\frac{π}{3}$)=$\frac{1}{3}$,則sin(2α-$\frac{π}{6}$)的值為(  )
A.-$\frac{4}{9}$$\sqrt{2}$B.$\frac{4}{9}$$\sqrt{2}$C.±$\frac{4}{9}$$\sqrt{2}$D.-$\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在平面直角坐標(biāo)系中,|$\overrightarrow{a}$|=2014,$\overrightarrow{a}$與x軸非負(fù)半軸的夾角為$\frac{π}{3}$,$\overrightarrow{a}$始點(diǎn)與原點(diǎn)重合,終點(diǎn)在第一象限,則向量$\overrightarrow{a}$的坐標(biāo)是(  )
A.(1007$\sqrt{2}$,1007$\sqrt{2}$)B.(-1007$\sqrt{2}$,1007$\sqrt{2}$)C.(1007,1007$\sqrt{3}$)D.(1007$\sqrt{3}$,1007)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,在三棱錐V-ABC中,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BC且AC=BC=$\sqrt{2}$,O,M分別為AB,VA的中點(diǎn).
(1)求證:VB∥平面MOC;
(2)求證:CO⊥面VAB;
(3)求三棱錐C-VAB的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案