已知某幾何體的三視圖如圖所示,則該幾何體的體積等于(  )
A、
160
3
B、32
C、
32
3
D、
352
3
考點:由三視圖求面積、體積
專題:空間位置關系與距離
分析:由已知可得該幾何體是一個以側(cè)視圖為底面的三棱柱切去一個三棱錐所得的組合體,分別求出棱柱和棱錐的體積,相減可得答案.
解答: 解:由已知可得該幾何體是一個以假視圖為底面的三棱柱切去一個三棱錐所得的組合體,
其中底面面積S=
1
2
×4×4=8,
棱柱的高為8,故棱柱的體積為:8×8=64,
棱錐的高為4,故棱柱的體積為:
1
3
×8×4=
32
3

故該幾何體的體積V=64-
32
3
=
160
3
,
故選:A
點評:本題考查由三視圖求幾何體的體積和表面積,根據(jù)已知的三視圖分析出幾何體的形狀是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知P是直線l:3x-4y+11=0上的動點,PA、PB是圓C:(x-1)2+(y-1)2=1的兩條切線,圓心為C,那么四邊形PACB面積的最小值是( 。
A、
2
B、2
2
C、
3
D、2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

方程lnx+2x=6的根屬于區(qū)間( 。
A、(1,2)
B、(
5
2
,4)
C、(1,
7
4
D、(
7
4
,
5
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果方程x2-ky2=2表示焦點在y軸上的橢圓,那么實數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=lg(-x2+2x+8)的單調(diào)遞減區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設{an}是等比數(shù)列,則“a1<a2<a3”是“數(shù)列{an}是遞增數(shù)列”的
 
條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=32x-(k+1)3x-2,當x∈[1,+∞]時,f(x)恒為正值,則k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x
1+x2
是定義在(-1,1)上的函數(shù).
(Ⅰ)判斷函數(shù)f(x)的奇偶性(不需證明);
(Ⅱ)用定義法證明函數(shù)f(x)在(-1,1)上是增函數(shù);
(Ⅲ)解不等式f(x-1)+f(x)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

記不等式組
x+y-4≤0
3x-2y+3≥0
x-4y+1≥0
所表示的區(qū)域為D.
(1)求區(qū)域D的面積;
(2)設Q(x,y)為區(qū)域D內(nèi)一動點,求z=
y-2
x+4
的取值范圍.

查看答案和解析>>

同步練習冊答案