A. | $\frac{2}{3}$ | B. | $\frac{\sqrt{6}+2}{4}$ | C. | $\frac{\sqrt{6}+\sqrt{2}}{4}$ | D. | $\frac{\sqrt{2}+2}{4}$ |
分析 不等式x+$\sqrt{xy}$≤a(x+2y)對(duì)任意的正實(shí)數(shù)x,y都成立,化為a≥$\frac{x+\sqrt{xy}}{x+2y}$,令s=$\frac{x+\sqrt{xy}}{x+2y}$=$\frac{1+\sqrt{\frac{y}{x}}}{1+2•\frac{y}{x}}$,令$\sqrt{\frac{y}{x}}$=t>0,則s=$\frac{1+t}{1+2{t}^{2}}$,化為2st2-t+s-1=0,根據(jù)上述方程存在正實(shí)數(shù)根,即可得出.
解答 解:∵不等式x+$\sqrt{xy}$≤a(x+2y)對(duì)任意的正實(shí)數(shù)x,y都成立,
∴a≥$\frac{x+\sqrt{xy}}{x+2y}$,
令s=$\frac{x+\sqrt{xy}}{x+2y}$=$\frac{1+\sqrt{\frac{y}{x}}}{1+2•\frac{y}{x}}$,
令$\sqrt{\frac{y}{x}}$=t>0,則s=$\frac{1+t}{1+2{t}^{2}}$,
化為2st2-t+s-1=0,
∵上述方程存在正實(shí)數(shù)根,則$\left\{\begin{array}{l}{△=0}\\{\frac{1}{2s}>0}\\{\frac{s-1}{2s}>0}\end{array}\right.$,或$\left\{\begin{array}{l}{△>0}\\{\frac{s-1}{2s}<0}\end{array}\right.$,
解得a=$\frac{\sqrt{6}+2}{4}$,或a≥$\frac{\sqrt{6}+2}{4}$.
∴實(shí)數(shù)a的最小值是$\frac{\sqrt{6}+2}{4}$,
故選:B.
點(diǎn)評(píng) 本題考查了不等式的性質(zhì)、一元二次方程有實(shí)數(shù)根與判別式的關(guān)系、二次函數(shù)的圖象與性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2\sqrt{3}}{3}$ | B. | 2 | C. | $\frac{2\sqrt{3}}{3}$或2 | D. | $\sqrt{3}$或2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com