18.袋中有黑球和白球共7個(gè)球,已知從中任取2個(gè)球都是白球的概率為$\frac{1}{7}$.現(xiàn)有甲、乙兩人從袋中輪流摸球(甲先),每次摸出1球且不放回,直到摸出白球?yàn)橹梗畡t袋中原有白球的個(gè)數(shù)為3,甲摸到白球而終止的概率為$\frac{22}{35}$.

分析 由袋中有黑球和白球共7個(gè)球,從中任取2個(gè)球都是白球的概率為$\frac{1}{7}$,利用等可能事件概率計(jì)算公式能求出白球個(gè)數(shù);甲摸到白球而終止的情況有三種:①第一次甲摸到白球;②第一次甲摸到黑球,第二次乙摸到黑球,第三次甲摸到白球;③第一次甲摸到黑球,第二次乙摸到黑球,第三次甲摸到黑球,第四次乙摸到黑球,第五次甲摸到白球.由此能求出結(jié)果.

解答 解:∵袋中有黑球和白球共7個(gè)球,從中任取2個(gè)球都是白球的概率為$\frac{1}{7}$.
設(shè)白球個(gè)數(shù)為n個(gè),
∴$\frac{{C}_{n}^{2}}{{C}_{7}^{2}}$=$\frac{1}{7}$,解得n=3,
現(xiàn)有甲、乙兩人從袋中輪流摸球(甲先),每次摸出1球且不放回,直到摸出白球?yàn)橹梗?br />∴甲摸到白球而終止的概率為:
p=$\frac{3}{7}+\frac{4}{7}×\frac{3}{6}×\frac{3}{5}$+$\frac{4}{7}×\frac{3}{6}×\frac{2}{5}×\frac{1}{4}×\frac{3}{3}$=$\frac{22}{35}$.
故答案為:3; $\frac{22}{35}$.

點(diǎn)評(píng) 本題考查概率的求法及應(yīng)用,是中檔題,解題時(shí)要認(rèn)真審題,注意互斥事件概率加法公式和相互獨(dú)立事件概率乘法公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若不等式|x+3|+|x-5|≥n2-2n的解集為R,則實(shí)數(shù)n的取值范圍是[-2,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在區(qū)間[-5,5]內(nèi)隨機(jī)地取出一個(gè)數(shù)a,則恰好使1是關(guān)于x的不等式2x2+ax-a2<0的一個(gè)解的概率為( 。
A.0.3B.0.4C.0.6D.0.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在區(qū)間[0,π]上隨機(jī)取一個(gè)數(shù)x,則事件“sinx≥|cosx|”發(fā)生的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)a=log412,b=log515,c=log618,則(  )
A.a>b>cB.b>c>aC.a>c>bD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)f(x)是定義在R上的周期為2的奇函數(shù),當(dāng)0<x<1時(shí),f(x)=4x,則f(-$\frac{9}{2}$)+f(6)的值為( 。
A.2B.-2C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某同學(xué)用“五點(diǎn)法”畫函數(shù)f(x)=Asin(?x+φ)(?>0,|φ|<$\frac{π}{2}}$)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表:
?x+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{5π}{12}$$\frac{11π}{12}$
Asin(?x+φ)030-30
(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整,并直接寫出函數(shù)f(x)的解析式;
(2)將y=f(x)圖象上所有點(diǎn)向左平行移動(dòng)θ(θ>0)個(gè)單位長(zhǎng)度,得到y(tǒng)=g(x)的圖象,若y=g(x)圖象的一個(gè)對(duì)稱中心($\frac{5π}{12},0}$),求θ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在銳角△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,且2sin2$\frac{A+C}{2}$+cos2B=1.
(Ⅰ)求角B的大;
(Ⅱ)若b=2,求y=a+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知函數(shù)f(x)=ln(ax+b)(a>0且a≠1)是R上的奇函數(shù),則不等式f(x)>alna的解集是(  )
A.(a,+∞)
B.(-∞,a)
C.當(dāng)a>1時(shí),解集是(a,+∞);當(dāng)0<a<1時(shí),解集是(-∞,a)
D.當(dāng)a>1時(shí),解集是(-∞,a);當(dāng)0<a<1時(shí),解集是(a,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案