5.若不等式ex<|a|+|a-1|對任意a∈R恒成立,則實數(shù)x的取值范圍為( 。
A.(-∞,0)B.(-∞,10)C.(0,1)D.(-∞,1)

分析 將x的值進行分段討論,①0≤a≤1,②a<0,③a>1,從而可分別將絕對值符號去掉,得出a的范圍,綜合起來即可得出x的范圍.

解答 解:當①0≤a≤1時,原不等式可化為:ex<1,解得:x<0;
②當a<0時,原不等式可化為:ex<1-2a;此時可解得x<0;
③當a>1時,原不等式可化為:ex<2a-1,解得:x<0;
綜合以上a的三個范圍可得x<0,即實數(shù)x的取值范圍為(-∞,0).
故選:A.

點評 本題考查了含絕對值符號的一元一次不等式,關鍵是將a的值進行分段討論,去掉絕對值,在進行x的范圍合并時要堅持“大大取大,小小取小”的原則,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.如圖所示,四棱錐P-ABCD的底面是邊長為2的正方形,PA⊥CD,PA=2,PD=2$\sqrt{2}$,E為PD上的一點,且PE=3ED.
(Ⅰ)求證:PA⊥平面ABCD;
(Ⅱ)求二面角D-AC-E的正切值;
(Ⅲ)在側(cè)棱PC上是否存在一點F,使得BF∥平面AEC?若存在,求出PF的長度,并證明;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知某幾何體的三視圖如圖所示,根據(jù)圖中的數(shù)據(jù)可得此幾何體的體積為( 。
A.$\frac{1}{6}$B.$\frac{17}{6}$C.$\frac{8}{3}$D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設a=log43,b=log34,c=log${\;}_{\frac{1}{3}}$$\frac{3}{4}$,則( 。
A.a<b<cB.a<c<bC.c<a<bD.b<a<c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.在區(qū)間[-1,2]上隨機取一個數(shù),則-1<2sin$\frac{πx}{4}$<$\sqrt{2}$的概率為( 。
A.$\frac{5}{6}$B.$\frac{2}{3}$C.$\frac{5}{9}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知f(x)=x•tanx,若x1,x2∈(-$\frac{π}{2}$,$\frac{π}{2}$),且f(x1)>f(x2),則下列結(jié)論中一定成立的是( 。
A.x1>x2B.x1<x2C.x1+x2>0D.x12>x22

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+\frac{1}{x},x>0}\\{-x+\frac{1}{x},x<0}\end{array}\right.$,若關于x的方程f(x2-4x)=a有六個不同的實根,則實數(shù)a的取值范圍是(  )
A.(2,+∞)B.(1,$\frac{15}{4}$)C.(1,2)D.(2,$\frac{15}{4}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.關于m的不等式組$\left\{\begin{array}{l}{\frac{2(m-1)}{3}-\frac{5m+1}{2}≥-3}\\{3m-2(m-1)≥a}\end{array}\right.$ 的非正整數(shù)解是-3,-2,-1,0,則a的最大值為( 。
A.-3B.0C.1D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設z是復數(shù),下列命題中的假命題是( 。
A.若z2≥0,則z是實數(shù)B.若z是虛數(shù),則z•$\overline{z}$≥0
C.若z是虛數(shù),則z2≥0D.若z是純虛數(shù),則z2<0

查看答案和解析>>

同步練習冊答案