17.已知命題p:雙曲線C為等軸雙曲線,命題q:雙曲線C的離心率為$\sqrt{2}$,則命題p是命題q成立的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

分析 雙曲線C的離心率為$\sqrt{2}$,求出雙曲線方程判斷是不是等軸雙曲線,以及雙曲線C為等軸雙曲線求出離心率,即可判斷充要條件.

解答 解:雙曲線C的離心率為$\sqrt{2}$,所以c=$\sqrt{2}$a,并且a=b,所以雙曲線為等軸雙曲線,
對(duì)于命題p,雙曲線C為等軸雙曲線,所以a=b,c=$\sqrt{2}$a,所以e=$\sqrt{2}$.
所以命題“q:雙曲線C的離心率為$\sqrt{2}$”,命題“q:雙曲線C為等軸雙曲線”.
則p是q的充要條件.
故選:C.

點(diǎn)評(píng) 本題考查雙曲線的離心率與等軸雙曲線的關(guān)系,充要條件的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.給出下列各題:
①若p:?x∈R,x2-x≤0,則¬p:?x0∈R,x${\;}_{0}^{2}$-x0≥0
②命題:若xy=0,則x=0或y=0,其否命題是:若xy≠0,則x≠0且y≠0
③?m∈R,使f(x)=(m-1)x${\;}^{{m}^{2}-4m+3}$為冪函數(shù),且在(0,+∞)上單調(diào)遞減.
正確命題有( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,b=2$\sqrt{3}$,B=$\frac{2π}{3}$.
(Ⅰ)若a=2,求角C;
(Ⅱ)若D為AC的中點(diǎn),BD=$\sqrt{2}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.i為虛數(shù)單位,負(fù)數(shù)i2016的共軛復(fù)數(shù)為(  )
A.1B.iC.-1D.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=sinωx(sinωx+2$\sqrt{3}$cosωx)+sin(ωx-$\frac{π}{4}$)sin(ωx+$\frac{π}{4}$)(其中ω為常數(shù),且ω>0),函數(shù)g(x)=f(x)-$\frac{5}{2}$的部分圖象如圖所示.
(I)求函數(shù)g(x)的單凋遞減區(qū)間;
(Ⅱ)當(dāng)x∈[-$\frac{π}{6}$,$\frac{π}{4}$]時(shí),求函數(shù)f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.先后擲兩次骰子(骰子的六個(gè)面上分別有1,2,3,4,5,6個(gè)點(diǎn)),落在水平桌面后,記正面朝上的
點(diǎn)數(shù)分別為x,y,記事件A為“x,y都為偶數(shù)且x≠y”,則A發(fā)生的概率P(A)為( 。
A.$\frac{1}{4}$B.$\frac{1}{6}$C.$\frac{1}{3}$D.$\frac{1}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知Z=$\frac{2i}{1+i}$(i為虛數(shù)單位),則Z的共軛復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),正三角形PQR的頂點(diǎn)R在C的左準(zhǔn)線l上,P、Q在橢圓上,且線段PQ經(jīng)過(guò)左焦點(diǎn)F1,KPQ=1.
(1)求橢圓C的離心率;
(2)橢圓上是否存在關(guān)于直線PQ對(duì)稱的兩點(diǎn),請(qǐng)說(shuō)明理由;
(3)設(shè)H為橢圓上一動(dòng)點(diǎn),K是x正半軸上一定點(diǎn),滿足OA=3OK(A為橢圓右頂點(diǎn)),當(dāng)HK+HF1的最大值為5+$\sqrt{6}$時(shí),求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知兩點(diǎn)P(4,0),Q(0,2),則以線段PQ為直徑的圓的方程是( 。
A.(x+2)2+(y+1)2=5B.(x-2)2+(y-1)2=10C.(x-2)2+(y-1)2=5D.(x+2)2+(y+1)2=10

查看答案和解析>>

同步練習(xí)冊(cè)答案