9.已知Z=$\frac{2i}{1+i}$(i為虛數(shù)單位),則Z的共軛復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 把已知的等式變形,然后直接利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,求出$\overline{z}$,得到其坐標得答案.

解答 解:∵Z=$\frac{2i}{1+i}$(i為虛數(shù)單位),
∴$\overline{z}$=1-i,對應(yīng)的點為(1,-1)在第四象限.
故選:D.

點評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知等比數(shù)列{an}的前3項的積為1,第4項為$\frac{1}{9}$.求它的首項、公比及前5項的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的最高點D的坐標為($\frac{π}{8}$,2),由點D運動到相鄰最低點時,函數(shù)圖形與x的交點的坐標為($\frac{3π}{8}$,0).
(1)求函數(shù)y=f(x)的解析式;
(2)若x∈[-$\frac{π}{6}$,$\frac{11π}{24}$]時,函數(shù)g(x)=f(x)+m的最小值為2,試求出函數(shù)g(x)最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知命題p:雙曲線C為等軸雙曲線,命題q:雙曲線C的離心率為$\sqrt{2}$,則命題p是命題q成立的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知向量$\overrightarrow{a}$=(3,-2),$\overrightarrow$=(x,y-1)且$\overrightarrow{a}$∥$\overrightarrow$,若x,y均為正數(shù),則$\frac{3}{x}$+$\frac{2}{y}$的最小值是( 。
A.24B.8C.$\frac{8}{3}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)$f(x)=|{x-a}|+|{x-\frac{1}{2}}|,x∈R$
(Ⅰ)當$a=\frac{5}{2}$時,解不等式f(x)≤x+10;
(Ⅱ)關(guān)于x的不等式f(x)≥a在R上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若1+2i(i為虛數(shù)單位)是實系數(shù)方程x2+bx+c=0的一個復(fù)數(shù)根,則( 。
A.b=2,c=-3B.b=2,c=5C.b=-2,c=-3D.b=-2,c=5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在△ABC中,M是AB的中點,N是AC上一點,且$\overrightarrow{NC}$=2$\overrightarrow{AN}$,BN與CM相交于一點P.$\overrightarrow{AP}$=$λ\overrightarrow{AB}$+$μ\overrightarrow{AC}$,則λ+μ=( 。
A.1B.$\frac{1}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求函數(shù)y=$\frac{30x-{x}^{2}}{x+2}$(x>-2)的值域.

查看答案和解析>>

同步練習(xí)冊答案