【題目】已知函數(shù),為實數(shù),
(1)若函數(shù)在區(qū)間上是單調函數(shù),求實數(shù)的范圍;
(2)若對任意,都有成立,求實數(shù)的值;
(3)若,求函數(shù)的最小值。
【答案】(1) (2)-4.(3) 見解析.
【解析】
(1)函數(shù)在區(qū)間上是單調函數(shù),故分單調增與單調減兩種情況進行討論求解的取值范圍;
(2)對任意,都有成立,可以得到二次函數(shù)的對稱軸,從而解得結果;
(3)要求函數(shù)的最小值,首先要求出在上單調性,根據(jù)題意分情況討論求解函數(shù)的單調性及最值.
解:(1)函數(shù)在區(qū)間上是單調函數(shù),
函數(shù)的對稱軸為,
所以對稱軸或 ,所以或.
(2)因為函數(shù)對任意,都有成立,
所以的圖像關于直線對稱,
所以,
得.
(3)若即時,
函數(shù)在單調遞增,
故.
若即時,
函數(shù)在單調遞減,
故.
若即時,
函數(shù)在單調遞減,
函數(shù)在單調遞增,
故.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是定義在上的偶函數(shù),當時, .
(1)直接寫出函數(shù)的增區(qū)間(不需要證明);
(2)求出函數(shù), 的解析式;
(3)若函數(shù), ,求函數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠生產(chǎn)某產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本(萬元),若年產(chǎn)量不足千件, 的圖像是如圖的拋物線,此時的解集為,且的最小值是,若年產(chǎn)量不小于千件, ,每千件商品售價為50萬元,通過市場分析,該廠生產(chǎn)的商品能全部售完;
(1)寫出年利潤(萬元)關于年產(chǎn)量(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】支付寶和微信支付是目前市場占有率較高的支付方式,某第三方調研機構對使用這兩種支付方式的人數(shù)作了對比.從全國隨機抽取了100個地區(qū)作為研究樣本,計算了各個地區(qū)樣本的使用人數(shù),其頻率分布直方圖如圖.
(1)記A表示事件“微信支付人數(shù)低于50千人”,估計A的概率;
(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認為支付人數(shù)與支付方式有關;
支付人數(shù)<50千人 | 支付人數(shù)≥50千人 | 總計 | |
微信支付 | |||
支付寶支付 | |||
總計 |
(3)根據(jù)支付人數(shù)的頻率分布直方圖,對兩種支付方式的優(yōu)劣進行比較.
附:
P(K2≥K) | 0.050 | 0.010 | 0.001 |
K | 3.841 | 6.635 | 10.828 |
K2=
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,直線的參數(shù)方程是(為參數(shù)).以原點為極點,軸的正半軸為極軸,建立極坐標系,圓以極坐標系中的點為圓心,為半徑.
(1)求圓的極坐標方程;
(2)判斷直線與圓之間的位置關系.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某化工廠生產(chǎn)某種產(chǎn)品,當年產(chǎn)量在150噸至250噸時,每年的生產(chǎn)成本萬元與年產(chǎn)量噸之間的關系可可近似地表示為.
(1)若每年的生產(chǎn)總成本不超過2000萬元,求年產(chǎn)量的取值范圍;
(2)求年產(chǎn)量為多少噸時,每噸的平均成本最低,并求每噸的最低成本.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在△ABC中,D,E分別為AB,AC的中點,O為DE的中點,,BC=4.將△ADE沿DE折起到△的位置,使得平面平面BCED, F為A1C的中點,如圖2.
(1)求證EF∥平面;
(2)求點C到平面的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com