分析 設(shè)等比數(shù)列{an}的公比為q,y由a1=3,S3=9,可得a1+a2+a3=3(1+q+q2)=9,解得q,利用求和公式即可得出.
解答 解:設(shè)等比數(shù)列{an}的公比為q,∵a1=3,S3=9,
∴a1+a2+a3=3(1+q+q2)=9,化為:q2+q-2=0,解得q=1或-2.
q=1時(shí),S10=30.
q=-2時(shí),S10=$\frac{3[1-(-2)^{10}]}{1-(-2)}$=-1023.
點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4或5 | B. | 5或6 | C. | 6或7 | D. | 不存在 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{6}}{4}$ | B. | $\frac{3\sqrt{6}}{16}$ | C. | $\sqrt{15}$ | D. | $\frac{3\sqrt{15}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{21}-12}}{5}$ | B. | $\frac{{12-\sqrt{21}}}{5}$ | C. | $\frac{{2\sqrt{21}-12}}{5}$ | D. | $\frac{{12-2\sqrt{21}}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com