A. | $\frac{17}{15}$ | B. | $\frac{15}{17}$ | C. | $\frac{3}{5}$ | D. | $\frac{5}{3}$ |
分析 取F'為雙曲線的右焦點(diǎn),連接PF',由OQ為△PFF'的中位線,即有|OQ|=$\frac{1}{2}$|PF'|,由題意可得|PF'|的最小值為2,由PF'的最小值為c-a,解方程可得a=3,求出c=5,由離心率公式即可得到所求值.
解答 解:取F'為雙曲線的右焦點(diǎn),連接PF',由OQ為△PFF'的中位線,即有|OQ|=$\frac{1}{2}$|PF'|,
由題意可得|PF'|的最小值為2,
由PF'的最小值為c-a=$\sqrt{{a}^{2}+16}$-a,
即有$\sqrt{{a}^{2}+16}$-a=2,
解得a=3,
可得雙曲線的方程為$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1,
即有c=$\sqrt{9+16}$=5,
可得離心率為e=$\frac{c}{a}$=$\frac{5}{3}$.
故選:D.
點(diǎn)評 本題考查雙曲線的離心率的求法,考查定義法的運(yùn)用,考查中位線定理和化簡運(yùn)算的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\sqrt{2}$,+∞) | B. | ($\sqrt{3}$,+∞) | C. | (2,+∞) | D. | ($\sqrt{5}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{10}}{2}$ | B. | $\sqrt{10}$ | C. | $\frac{3}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2\sqrt{3}}{3}$ | B. | $\sqrt{2}$ | C. | 2 | D. | $\frac{2\sqrt{6}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ±1 | B. | $±\frac{{\sqrt{2}}}{2}$ | C. | $±\sqrt{2}$ | D. | $±\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{4}{3}$ | C. | $\frac{2\sqrt{2}}{3}$ | D. | $\frac{4\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{17}+4}{4}$ | B. | $\frac{\sqrt{17}+3}{4}$ | C. | $\frac{\sqrt{17}+2}{4}$ | D. | $\frac{\sqrt{17}+1}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com