18.己知函數(shù)f(x)=$\left\{\begin{array}{l}{x+2,x≥0}\\{2-x,x<0}\end{array}\right.$,解不等式f(1-x2)>2x.

分析 先求出f(1-x2),再分段討論即可.

解答 解:f(x)=$\left\{\begin{array}{l}{x+2,x≥0}\\{2-x,x<0}\end{array}\right.$,
∴f(1-x2)=$\left\{\begin{array}{l}{3-{x}^{2},-1≤x≤1}\\{{x}^{2}+1,x<-1或x>1}\end{array}\right.$,
∵f(1-x2)>2x.
當-1≤x≤1時,即3-x2>2x,解得-1≤x<1,
當x<-1或x>1時,即x2+1>2x,即(x-1)2>0,解得x<-1或x>1,
綜上所述不等式的解集為(-∞,1)∪(1,+∞).

點評 本題考查了分段函數(shù)的性質(zhì)、一元二次不等式的解法,考查了計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

8.雙曲線kx2-y2=1的一條漸近線與直線2x-y+3=0垂直,則雙曲線的離心率是$\frac{{\sqrt{5}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知點P在雙曲線$\frac{x^2}{a^2}-\frac{y^2}{16}$=1的右支上,F(xiàn)為雙曲線的左焦點,Q為線段PF的中點,O為坐標原點.若|OQ|的最小值為1,則雙曲線的離心率為(  )
A.$\frac{17}{15}$B.$\frac{15}{17}$C.$\frac{3}{5}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.一個六棱柱的底面是正六邊形,側(cè)棱垂直于底面,所有棱的長都為1,頂點都在同一個球面上,則該球的體積為( 。
A.20πB.$\frac{{20\sqrt{5}π}}{3}$C.D.$\frac{{5\sqrt{5}π}}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.過雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的一個焦點F作雙曲線的一條漸近線的垂線,若垂線的延長線與y軸的交點坐標為$(0\;,\;\;\frac{c}{2})$,則此雙曲線的離心率是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知函數(shù)$f(x)=\left\{\begin{array}{l}x+1(x≤1)\\ \sqrt{x}(x>1).\end{array}\right.$若f(x)>f(x+1),則x的取值范圍是(0,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.點P為雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$右支上第一象限內(nèi)的一點,其右焦點為F2,若直線PF2的斜率為$\sqrt{3}$,M為線段PF2的中點,且|OF2|=|F2M|,則該雙曲線的離心率為$\frac{\sqrt{3}+1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設a,b是不相等的兩個正數(shù),且blna-alnb=a-b,給出下列結(jié)論:①a+b-ab>1;②a+b>2;③$\frac{1}{a}$+$\frac{1}$>2.其中所有正確結(jié)論的序號是(  )
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.過拋物線y2=2px(p>0)的焦點F,且傾斜角為$\frac{π}{4}$的直線與拋物線交于A,B兩點,若AB的垂直平分線經(jīng)過點(0,2),M為拋物線上的一個動點,則M到直線11:5x-4y+4=0和l2:x=-$\frac{2}{5}$的距離之和的最小值為(  )
A.$\frac{6\sqrt{41}}{41}$B.$\frac{6\sqrt{31}}{31}$C.$\frac{3\sqrt{41}}{41}$D.$\frac{3\sqrt{31}}{31}$

查看答案和解析>>

同步練習冊答案