分析 求出f′(x),由題意可知曲線在點(diǎn)(1,f(1))處的切線方程的斜率等于f′(1),所以把x=1代入到f′(x)中即可求出f′(1)的值,得到切線的斜率,然后把x=1和f′(1)的值代入到f(x)中求出切點(diǎn)的縱坐標(biāo),根據(jù)切點(diǎn)坐標(biāo)和斜率直線切線的方程即可.
解答 解:f′(x)=2ln x-xf′(1),
由題意可知,曲線在(1,f(1))處切線方程的斜率k=f′(1),
則f′(1)=2-f′(1),解得f′(1)=1,
則f(1)=-1,所以切點(diǎn)(1,-1),
所以切線方程為:y+1=x-1,化簡(jiǎn)得x-y-2=0
故答案為:x-y-2=0.
點(diǎn)評(píng) 此題考查學(xué)生會(huì)利用導(dǎo)數(shù)求過曲線上某點(diǎn)切線方程的斜率,會(huì)根據(jù)一點(diǎn)和斜率寫出直線的方程,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(-∞,\frac{1}{2})$ | B. | (-∞,-1) | C. | ($\frac{1}{2}$,+∞) | D. | (-∞,-1)∪(2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3f(2)<2f(3) | B. | 2f(3)<3f(2) | C. | 3f(4)<4f(3) | D. | 2f(3)<3f(4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com