11.已知集合M={x|x2-2x≥0},N={x|x≤1},則(∁RM)∩N={x|0<x≤1}.

分析 先求解一元二次不等式化簡(jiǎn)集合M,求出∁RM,則(∁RM)交N的答案可求.

解答 解:集合M={x|x2-2x≥0}={x|x≤0,或x≥2},
∴∁RM={x|0<x<2},
∵N={x|x≤1},
∴(∁RM)∩N={x|0<x≤1},
故答案為:{x|0<x≤1}.

點(diǎn)評(píng) 本題考查了交、并、補(bǔ)集的混合運(yùn)算,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.某公司為確定明年投入某產(chǎn)品廣告支出,對(duì)近5年的廣告支出m與銷售額t(單位:百萬元)進(jìn)行了初步統(tǒng)計(jì),得到下列表格中的數(shù)據(jù):
t3040p5070
m24568
經(jīng)測(cè)算,年廣告支出m和年銷售額t滿足線性回歸方程$\widehat{t}$=6.5m+17.5,則p的值為60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)點(diǎn)P是△ABC所在平面內(nèi)的一點(diǎn),$\overrightarrow{PA}$+2$\overrightarrow{PB}$+3$\overrightarrow{PC}$=4$\overrightarrow{AB}$,且△ABC的面積為S,則下列判斷正確的是(  )
A.點(diǎn)P在△ABC外,且△APC的面積為$\frac{1}{3}$SB.點(diǎn)P在△ABC外,且△APC的面積為$\frac{1}{2}$S
C.點(diǎn)P在△ABC內(nèi),且△APC的面積為$\frac{1}{3}$SD.點(diǎn)P在△ABC內(nèi),且△APC的面積為$\frac{1}{2}$S

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知點(diǎn)F(1,0)是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦點(diǎn),且橢圓C上的點(diǎn)到點(diǎn)F的最大距離為$\sqrt{2}+1$.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線l1:y=kx+m,l2:y=kx-m,若l1,l2均與橢圓C相切,試在x軸上確定一點(diǎn)M,使點(diǎn)M到l1,l2的距離之積恒為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知17x=100,1.7y=100,求$\frac{1}{x}-\frac{1}{y}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知數(shù)列{an}是以a1為首項(xiàng),q為公比的等比數(shù)列,對(duì)于給定的a1,滿足q2-2a1q+2a1-1=0的數(shù)列{an}是唯一的,則首項(xiàng)a1=1或$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知向量$\overrightarrow{a}=(1,1)$,$\overrightarrow$=($\sqrt{2}$,0),$\overrightarrow{c}$=(-2,$\sqrt{2}$),則$\overrightarrow{a}+\overrightarrow$與$\overrightarrow+\overrightarrow{c}$的位置關(guān)系是($\overrightarrow{a}$+$\overrightarrow$)⊥($\overrightarrow$+$\overrightarrow{c}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2,過點(diǎn)F1并且垂直于x軸的直線為l,若過原點(diǎn)O和F2并和直線l相切的圓的半徑等于點(diǎn)F2到雙曲線C的兩條漸近線的距離之和,則雙曲線C的離心率為$\frac{4\sqrt{7}}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.集合{a,b}的所有子集是:{a},,∅,{a,b}.

查看答案和解析>>

同步練習(xí)冊(cè)答案