已知函數(shù)f(x)=sinx•cos(x-
π
6
)+cos2x-
1
2

(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,角A,B,C的對邊分別是a,b,c,若f(A)=
1
2
,a=
3
,S△ABC=
3
2
,求b+c的值.
考點:余弦定理的應(yīng)用,三角函數(shù)中的恒等變換應(yīng)用
專題:綜合題,解三角形
分析:(Ⅰ)先對函數(shù)解析式化簡,利用三角函數(shù)的性質(zhì)求得函數(shù)f(x)的單調(diào)遞增區(qū)間.
(Ⅱ)利用f(A)求得A,進而根據(jù)余弦定理構(gòu)建b,c和a的關(guān)系,結(jié)合三角形的面積公式,即可求b+c的值.
解答: 解:(Ⅰ)解:f(x)=sinx(
3
2
cosx+
1
2
sinx)+cos2x-
1
2

=
3
2
sinxcosx+
1
2
cos2x
=
1
2
sin(2x+
π
6
)+
1
4

由2x+
π
6
∈(-
π
2
+2kπ,
π
2
+2kπ),可得函數(shù)f(x)的單調(diào)遞增區(qū)間(-
3
+kπ,
π
6
+kπ)(k∈Z);
(Ⅱ)由題意f(A)=
1
2
sin(2A+
π
6
)+
1
4
=
1
2
,化簡得 sin(2A+
π
6
)=
1
2
,
∵A∈(0,π),
∴A=
π
3
;
在△ABC中,根據(jù)余弦定理,得a2=b2+c2-2bccos
π
3
=(b+c)2-3bc=3,
∵S△ABC=
3
2
=
1
2
bc•
3
2
,∴bc=2
∴b+c=3.
點評:本題主要考查三角函數(shù)恒等變換的運用,余弦定理及三角形的面積公式的基本知識.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC是邊長為2
3
的正三角形,且滿足
AD
=
1
3
(
AB
+
AC
),
AP
=
AD
+
1
2
BC
,則△APD的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“直線x=2kπ(k∈Z)”是“函數(shù)f(x)=2sin(x+
π
2
)圖象的對稱軸”的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x2-a+1)ex,g(x)=(x2-2)ex+2
(1)若曲線y=f(x)在(1,f(1))處的切線為l:y=2ex+b,求a,b的值;
(2)若函數(shù)f(x)在[-3,1]上是單調(diào)函數(shù),求實數(shù)a的取值范圍;
(3)若f(x)有兩個不同極值點m,n(m<n),且|m+n|≥|mn|-1,記F(x)=e2f(x)+g(x),求F(m)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三個平面將空間最多能分成(  )
A、6部分B、7部分
C、8部分D、9部分

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
3x-y-6≤0
x-y+2≥0
x≥0,y≥0
,若目標函數(shù)z=ax+by(a>0,b>0)的最大值為12,則
3
a
+
2
b
的最小值為( 。
A、4B、3C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
|x|
x+2

(Ⅰ)判斷函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性;
(Ⅱ)若函數(shù)g(x)=f(x)-kx2(k∈R)有四個不同的零點,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a=1,b=
3
,∠A=
π
6
,則∠B等于( 。
A、
π
3
B、
π
3
3
C、
π
6
6
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,長方形四個頂點為O(0,0),A(
2
,0),B(
2
,2
2
),C(0,2
2
),若冪函數(shù)y=f(x)圖象經(jīng)過點B,則圖中陰影部分的面積為
 

查看答案和解析>>

同步練習(xí)冊答案