【題目】共享單車已成為一種時(shí)髦的新型環(huán)保交通工具,某共享單車公司為了拓展市場(chǎng),對(duì)兩個(gè)品牌的共享單車在編號(hào)分別為的五個(gè)城市的用戶人數(shù)(單位:十萬(wàn))進(jìn)行統(tǒng)計(jì),得到數(shù)據(jù)如下:

城市

品牌

1

2

3

4

5

A品牌

3

4

12

6

8

B品牌

4

3

7

9

5

(Ⅰ)若共享單車用戶人數(shù)超過(guò)50萬(wàn)的城市稱為“優(yōu)城”,否則稱為“非優(yōu)城”,據(jù)此判斷能否有85%的把握認(rèn)為“優(yōu)城”和共享單車品牌有關(guān)?

(Ⅱ)若不考慮其它因素,為了拓展市場(chǎng),對(duì)A品牌要從這五個(gè)城市選擇三個(gè)城市進(jìn)行宣傳,

(ⅰ)求城市2被選中的概率;

(ⅱ)求在城市2被選中的條件下城市3也被選中的概率.

【答案】(1)沒(méi)有(2)(。0.6

【解析】分析: (Ⅰ)根據(jù)題意列出2×2列聯(lián)表,求出K2=0.4<2.072,從而沒(méi)有85%的理由認(rèn)為“優(yōu)質(zhì)潛力城市”與“共享單車”品牌有關(guān);

(Ⅱ)從這五個(gè)城市選擇三個(gè)城市的情形為10種,(ⅰ)城市2被選中的有6種,所求概率為;(ⅱ)在城市2被選中的有6種情形中,城市3被選中的有3種,所求概率為

詳解: (Ⅰ)根據(jù)題意列出列聯(lián)表如下:

,

所以沒(méi)有85%的把握認(rèn)為“優(yōu)城”與共享單車品牌有關(guān).

(Ⅱ)從這五個(gè)城市選擇三個(gè)城市的情形為

共10種,

(ⅰ)城市2被選中的有6種,所求概率為;

ⅱ)在城市2被選中的有6種情形中,城市3被選中的有3種,所求概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線.

(1)當(dāng)時(shí),求的單調(diào)區(qū)間;

(2)若對(duì)任意時(shí),恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)下列命題:

①直線與函數(shù)的圖象相交,則相鄰兩交點(diǎn)的距離為;

②點(diǎn) 是函數(shù)的圖象的一個(gè)對(duì)稱中心;

③函數(shù)上單調(diào)遞減,則的取值范圍為

④函數(shù)對(duì)R恒成立,則.

其中所有正確命題的序號(hào)為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】汽車的普及給人們的出行帶來(lái)了諸多方便,但汽車超速行駛也造成了諸多隱患.為了解某一段公路汽車通過(guò)時(shí)的車速情況,現(xiàn)隨機(jī)抽測(cè)了通過(guò)這段公路的200輛汽車的時(shí)速,所得數(shù)據(jù)均在區(qū)間中,其頻率分布直方圖如圖所示.

(1)求被抽測(cè)的200輛汽車的平均時(shí)速.

(2)該路段路況良好,但屬于事故高發(fā)路段,交警部門(mén)對(duì)此路段過(guò)往車輛限速.對(duì)于超速行駛,交警部門(mén)對(duì)超速車輛有相應(yīng)處罰:記分(扣除駕駛員駕照的分?jǐn)?shù))和罰款.罰款情況如下:

超速情況

10%以內(nèi)

10%~20%

20%~50%

50%以上

罰款情況

0元

100元

150元

可以并處吊銷駕照

①求被抽測(cè)的200輛汽車中超速在10%~20%的車輛數(shù).

②該路段車流量比較大,按以前統(tǒng)計(jì)該路段每天來(lái)往車輛約2000輛.試預(yù)估每天的罰款總數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)a>0a≠1)是奇函數(shù).

1)求常數(shù)k的值;

2)若已知f1=,且函數(shù)在區(qū)間[1,+∞])上的最小值為—2,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),以軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為:.

(1)若曲線的參數(shù)方程為為參數(shù)),求曲線的直角坐標(biāo)方程和曲線的普通方程;

(2)若曲線的參數(shù)方程為為參數(shù)),,且曲線與曲線的交點(diǎn)分別為、,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在棱長(zhǎng)為1的正方體中,E,F(xiàn)分別為線段CD和上的動(dòng)點(diǎn),且滿足,則四邊形所圍成的圖形(如圖所示陰影部分)分別在該正方體有公共頂點(diǎn)的三個(gè)面上的正投影的面積之和(  )

A. 有最小值B. 有最大值C. 為定值3D. 為定值2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方體.

1)求證:

2)求異面直線所成角的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案