19.與直線4x-3y-2=0垂直且點(diǎn)(1,0)到它的距離為1的直線是3x+4y+2=0或3x+4y-8=0.

分析 設(shè)與直線4x-3y-2=0垂直的直線方程為3x+4y+m=0.根據(jù)點(diǎn)(1,0)到它的距離為1,可得$\frac{|3+m|}{5}$=1,解得m即可得出.

解答 解:設(shè)與直線4x-3y-2=0垂直的直線方程為3x+4y+m=0.
∵點(diǎn)(1,0)到它的距離為1,
∴$\frac{|3+m|}{5}$=1,解得m=2或-8.
因此所求的直線方程為:3x+4y+2=0,或3x+4y-8=0.
故答案為:3x+4y+2=0,或3x+4y-8=0.

點(diǎn)評 本題考查了相互垂直的直線斜率之間的關(guān)系、點(diǎn)到直線的距離公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x 軸的正軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位,已知直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=t+1}\\{y=t-2}\end{array}\right.$(t為參數(shù)),圓C的極坐標(biāo)方程是ρ=4cosθ.
(1)求直線l和圓C的普通方程,
(2)求直線l被圓C截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.求解齊次線性方程組:$\left\{\begin{array}{l}{{x}_{1}+2{x}_{2}+2{x}_{3}+{x}_{4}=0}\\{2{x}_{1}+{x}_{2}-2{x}_{3}-2{x}_{4}=0}\\{{x}_{1}-{x}_{2}-4{x}_{3}-3{x}_{4}=0}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.當(dāng)輸入的x值為3時,如圖的程序運(yùn)行的結(jié)果等于( 。
A.-3B.3C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.點(diǎn)A(2,3,5)關(guān)于坐標(biāo)平面xOy的對稱點(diǎn)B的坐標(biāo)是(  )
A.(2,3,-5)B.(2,-3,5)C.(-2,3,5)D.(-2,-3,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知等差數(shù)列{an}滿足a1=1,a3+a7=18.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若cn=2n-1an,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知$f(x)=\left\{\begin{array}{l}2{x^2}-8ax+3,x<1\\{a^x}-a,x≥1\end{array}\right.$是R上的單調(diào)遞減函數(shù),則實(shí)數(shù)a的取值范圍為$[{\frac{1}{2},\frac{5}{8}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)命題p:{x|x2-4ax+3a2<0}(a>0),命題q:{x|1<x-1≤2}
(1)如果a=1,且p∧q為真時,求實(shí)數(shù)x的取值范圍;
(2)若¬p是¬q的充分不必要條件時,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)f(x)=$\frac{\sqrt{x-1}}{x}$的值域是$[0,\frac{1}{2}]$.

查看答案和解析>>

同步練習(xí)冊答案