9.函數(shù)f(x)=$\frac{\sqrt{x-1}}{x}$的值域是$[0,\frac{1}{2}]$.

分析 由$\left\{\begin{array}{l}{x-1≥0}\\{x≠0}\end{array}\right.$,令$\sqrt{x-1}$=t≥0,可得x=t2+1,可得f(x)=$\frac{t}{{t}^{2}+1}$=g(t),通過對(duì)t分類討論,再利用基本不等式的性質(zhì)即可得出.

解答 解:由$\left\{\begin{array}{l}{x-1≥0}\\{x≠0}\end{array}\right.$,解得x≥1,
令$\sqrt{x-1}$=t≥0,可得x=t2+1,
∴f(x)=$\frac{t}{{t}^{2}+1}$=g(t),
當(dāng)t=0時(shí),g(0)=0;
當(dāng)t>0時(shí),0<g(t)=$\frac{1}{t+\frac{1}{t}}$$≤\frac{1}{2\sqrt{t•\frac{1}{t}}}$=$\frac{1}{2}$.
∴函數(shù)f(x)的值域是$[0,\frac{1}{2}]$
故答案為:$[0,\frac{1}{2}]$.

點(diǎn)評(píng) 本題考查了函數(shù)定義域與值域的求法、“換元法”、基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.與直線4x-3y-2=0垂直且點(diǎn)(1,0)到它的距離為1的直線是3x+4y+2=0或3x+4y-8=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列函數(shù)中,在(0,+∞)上是減函數(shù)的是( 。
A.y=$\frac{1}{x}$B.y=x2+1C.y=2xD.y=x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.過點(diǎn)(1,$\sqrt{2}$)的直線l將圓(x-2)2+y2=4分成兩段弧,當(dāng)優(yōu)弧所對(duì)的圓心角最大時(shí),直線l的斜率k=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若不等式ax2+bx+1>0的解集是(-$\frac{1}{3}$,$\frac{1}{2}$),則不等式x2+bx+a<0的解集是(-3,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.用分析法、綜合法證明:若a>0,b>0,a≠b,則$\frac{a+b}{2}$>$\sqrt{ab}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列函數(shù)中,既是奇函數(shù),又在區(qū)間(0,+∞)上為增函數(shù)的是( 。
A.y=lnxB.y=x3C.y=3xD.y=sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知三個(gè)不等式:(1)x2-2x-3<0;(2)$\frac{x-2}{x-4}<0$;(3)x2-(a+$\frac{1}{a}$)x+1<0(a>0).若同時(shí)滿足(1)(2)的x也滿足(3).求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知等腰直角三角形的直角邊的長(zhǎng)為2,將該三角形繞其斜邊所在的直線旋轉(zhuǎn)一周而形成的曲面所圍成的幾何體的表面積為4$\sqrt{2}$π.

查看答案和解析>>

同步練習(xí)冊(cè)答案