【題目】在平面直角坐標(biāo)系中,曲線,(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的普通方程和曲線的普通方程;

(2)若分別為曲線上的動(dòng)點(diǎn),求的最大值.

【答案】(1) 的普通方程為,;(2) 的最大值為.

【解析】試題分析:(1)先根據(jù)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,再根據(jù)三角同角關(guān)系將曲線參數(shù)方程化為普通方程,(2)先求圓心到橢圓上點(diǎn)最大值,再加半徑得的最大值.

試題解析:(1)的普通方程為.

∵曲線的極坐標(biāo)方程為,

∴曲線的普通方程為,即.

(2)設(shè)為曲線上一點(diǎn),

則點(diǎn)到曲線的圓心的距離

.

,∴當(dāng)時(shí),d有最大值.

又∵P,Q分別為曲線,曲線上動(dòng)點(diǎn),

的最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司訂購(gòu)了一批樹(shù)苗,為了檢測(cè)這批樹(shù)苗是否合格,從中隨機(jī)抽測(cè) 株樹(shù)苗的高度,經(jīng)數(shù)據(jù)處理得到如圖的頻率分布直方圖,起中最高的 株樹(shù)苗高度的莖葉圖如圖所示,以這 株樹(shù)苗的高度的頻率估計(jì)整批樹(shù)苗高度的概率.

(1)求這批樹(shù)苗的高度高于 米的概率,并求圖19-1中, , 的值;

(2)若從這批樹(shù)苗中隨機(jī)選取 株,記 為高度在 的樹(shù)苗數(shù)列,求 的分布列和數(shù)學(xué)期望.

(3)若變量 滿足,則稱變量 滿足近似于正態(tài)分布 的概率分布.如果這批樹(shù)苗的高度滿足近似于正態(tài)分布 的概率分布,則認(rèn)為這批樹(shù)苗是合格的,將順利獲得簽收;否則,公司將拒絕簽收.試問(wèn),該批樹(shù)苗能否被簽收?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2x.

(1)判斷函數(shù)的奇偶性,并證明;

(2)用單調(diào)性的定義證明函數(shù)f(x)=2x在(0,+∞)上單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的頂點(diǎn)為平面直角坐標(biāo)系的坐標(biāo)原點(diǎn),焦點(diǎn)為圓的圓心.經(jīng)過(guò)點(diǎn)的直線交拋物線兩點(diǎn),交圓兩點(diǎn),在第一象限,在第四象限.

(1)求拋物線的方程;

(2)是否存在直線使的等差中項(xiàng)?若存在,求直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校團(tuán)委組織了文明出行,愛(ài)我中華的知識(shí)競(jìng)賽,從參加考試的學(xué)生中抽出60名學(xué)生,將其成績(jī)(單位:分)整理后,得到如下頻率分布直方圖(其中分組區(qū)間為,.

1)求成績(jī)?cè)?/span>的頻率,并補(bǔ)全此頻率分布直方圖;

2)求這次考試平均分的估計(jì)值;

3)若從成績(jī)?cè)?/span>的學(xué)生中任選兩人,求他們的成績(jī)?cè)谕环纸M區(qū)間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形中,AB=2AD,為DC的中點(diǎn),將△ADM沿AM折起使平面ADM⊥平面ABCM.

(1)當(dāng)AB=2時(shí),求三棱錐的體積;

(2)求證:BM⊥AD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為實(shí)數(shù),數(shù)列滿足,.

(Ⅰ)當(dāng)時(shí),分別寫(xiě)出數(shù)列的前5項(xiàng);

(Ⅱ)證明:當(dāng)時(shí),存在正整數(shù),使得;

(Ⅲ)當(dāng)時(shí),是否存在實(shí)數(shù)及正整數(shù),使得數(shù)列的前項(xiàng)和?若存在,求出實(shí)數(shù)及正整數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某蔬菜基地種植西紅柿,由歷年市場(chǎng)行情得知,從二月一日起的300天內(nèi),西紅柿市場(chǎng)銷售價(jià)與上市時(shí)間的關(guān)系用圖(1)的一條折線表示;西紅柿的種植成本與上市時(shí)間的關(guān)系用圖(2)的拋物線段表示.

(1)寫(xiě)出圖(1)表示的市場(chǎng)售價(jià)與時(shí)間的函數(shù)關(guān)系式寫(xiě)出圖(2)表示的種植成本與時(shí)間的函數(shù)關(guān)系式

(2)認(rèn)定市場(chǎng)售價(jià)減去種植成本為純收益,問(wèn)何時(shí)上市的西紅柿收益最大?(注:市場(chǎng)售價(jià)和種植成本的單位:元/kg,時(shí)間單位:天.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某區(qū)的區(qū)人大代表有教師6人,分別來(lái)自甲、乙、丙、丁四個(gè)學(xué)校,其中甲校教師記為,乙校教師記為,丙校教師記為,丁校教師記為.現(xiàn)從這6名教師代表中選出3名教師組成十九大報(bào)告宣講團(tuán),要求甲、乙、丙、丁四個(gè)學(xué)校中,每校至多選出1.

(1)請(qǐng)列出十九大報(bào)告宣講團(tuán)組成人員的全部可能結(jié)果;

(2)求教師被選中的概率;

(3)求宣講團(tuán)中沒(méi)有乙校教師代表的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案