【題目】如圖,在底面半徑和高均為4的圓錐中,AB、CD是底面圓O的兩條互相垂直的直徑,E是母線PB的中點(diǎn),若過直徑CD與點(diǎn)E的平面與圓錐側(cè)面的交線是以E為頂點(diǎn)的拋物線的一部分,則該拋物線的焦點(diǎn)到圓錐頂點(diǎn)P的距離為 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓心在 軸上的圓 過點(diǎn) 和 ,圓 的方程為 .
(1)求圓 的方程;
(2)由圓 上的動(dòng)點(diǎn) 向圓 作兩條切線分別交 軸于 , 兩點(diǎn),求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形為等腰梯形, ,將沿折起,使得平面平面為的中點(diǎn),連接 (如圖2).
(1)求證: ;
(2)求直線與平面所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,D,E分別為AB,BC的中點(diǎn),點(diǎn)F在側(cè)棱B1B上,且B1D⊥A1F,A1C1⊥A1B1 . 求證:
(1)直線DE∥平面A1C1F;
(2)平面B1DE⊥平面A1C1F.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐,側(cè)面是邊長為2的正三角形,且與底面垂直,底面是的菱形, 為棱上的動(dòng)點(diǎn),且.
(1)求證: ;
(2)試確定的值,使得二面角的平面角余弦值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程選講
以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,
在直角坐標(biāo)系中,曲線的參數(shù)方程為(是參數(shù), ),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)當(dāng)時(shí),曲線和相交于、兩點(diǎn),求以線段為直徑的圓的直角坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在空間四邊形ABCD中,平面ABD⊥平面BCD,且DA⊥平面ABC,則△ABC的形狀是( )
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.不能確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱柱中, ,側(cè)面底面, 是的中點(diǎn), .
(Ⅰ)求證: 面;
(Ⅱ)求直線與平面所成線面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的離心率為 ,橢圓C的長軸長為4.
(1)求橢圓C的方程;
(2)已知直線l:y=kx+ 與橢圓C交于A,B兩點(diǎn),是否存在實(shí)數(shù)k使得以線段AB為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)O?若存在,求出k的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com