【題目】已知函數(shù)f(x)=(sinx+cosx)2+cos2x
(1)求f(x)最小正周期;
(2)求f(x)在區(qū)間[ ]上的最大值和最小值.
【答案】
(1)解:∵函數(shù)f(x)=(sinx+cosx)2+cos2x=1+sin2x+cos2x=1+ sin(2x+ ),
∴它的最小正周期為 =π
(2)解:在區(qū)間[ ]上,2x+ ∈[ , ],故當2x+ = 時,f(x)取得最小值為 1+ ×(﹣ )=0,
當2x+ = 時,f(x)取得最大值為 1+ ×1=1+
【解析】(1)由條件利用三角恒等變換求得f(x)的解析式,再利用正弦函數(shù)的周期性求得f(x)最小正周期.(2)由條件利用正弦函數(shù)的定義域和值域,求得f(x)在區(qū)間[ ]上的最大值和最小值.
【考點精析】掌握三角函數(shù)的最值是解答本題的根本,需要知道函數(shù),當時,取得最小值為;當時,取得最大值為,則,,.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐S﹣ABCD中,△ABD是正三角形,CB=CD,SC⊥BD.
(Ⅰ)求證:SB=SD;
(Ⅱ)若∠BCD=120°,M為棱SA的中點,求證:DM∥平面SBC.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(且),為自然對數(shù)的底數(shù).
(Ⅰ)當時,求函數(shù)在區(qū)間上的最大值;
(Ⅱ)若函數(shù)只有一個零點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)f(x)=ax2+bx(a,b為常數(shù),且a≠0),f(2)=0,且方程f(x)=x有等根.
(1)求f(x)的解析式
(2)是否存在常數(shù)m,n(m<n),使f(x)的定義域和值域分別是[m,n]和[2m,2n]?如存在,求出m,n的值;如不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】直線l交橢圓4x2+5y2=80于M、N兩點,橢圓的上頂點為B點,若△BMN的重心恰好落在橢圓的右焦點上,則直線l的方程是( )
A.5x+6y﹣28=0
B.5x﹣6y﹣28=0
C.6x+5y﹣28=0
D.6x﹣5y﹣28=0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,一動圓經過點且與直線相切,設該動圓圓心的軌跡方程為曲線.
(Ⅰ)求曲線的方程;
(Ⅱ)設是曲線上的動點,點的橫坐標為,點,在軸上,的內切圓的方程為,將表示成的函數(shù),并求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知全集U=R,集合A={x|x≤1,或x≥3},集合B={x|k<x<2k+1},且(UA)∩B=,求實數(shù)k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com