【題目】在△ABC中,.
(1)求△ABM與△ABC的面積之比;
(2)若N為AB中點(diǎn),與交于點(diǎn)P,且 (x,y∈R),求x+y的值.
【答案】(1) ; (2) .
【解析】
(1)由 ,即點(diǎn)M在線段BC上的靠近B的四等分點(diǎn)即可,
(Ⅱ)由題可得 由 (x,y∈R),所以x=3y,
因?yàn)?/span>N為AB的中點(diǎn),可得,由此可得 ,即可求得x+y的值.
(1)在△ABC中,=+,
4=3+,3(-)=-,
即3=,即點(diǎn)M是線段BC靠近B點(diǎn)的四等分點(diǎn).
故△ABM與△ABC的面積之比為.
(2)因?yàn)?/span>=+,∥,
=x+y (x,y∈R),所以x=3y,
因?yàn)?/span>N為AB的中點(diǎn),
所以=-=x+y-
=+y,
=-=x+y-
=x+(y-1),
因?yàn)?/span>∥,所以 (y-1)=xy,
即2x+y=1,又x=3y,
所以x=,y=,所以x+y=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=ax2+bx+c(a>0),
(1)當(dāng)a=1,b=2,若|f(x)|﹣2=0有且只有兩個(gè)不同的實(shí)根,求實(shí)數(shù)c的取值范圍;
(2)設(shè)方程f(x)=x的兩個(gè)實(shí)根為x1 , x2 , 且滿足0<t<x1 , x2﹣x1> ,試判斷f(t)與x1的大小,并給出理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地環(huán)保部門(mén)跟蹤調(diào)查一種有害昆蟲(chóng)的數(shù)量.根據(jù)調(diào)查數(shù)據(jù),該昆蟲(chóng)的數(shù)量(萬(wàn)只)與時(shí)間(年)(其中)的關(guān)系為.為有效控制有害昆蟲(chóng)數(shù)量、保護(hù)生態(tài)環(huán)境,環(huán)保部門(mén)通過(guò)實(shí)時(shí)監(jiān)控比值(其中為常數(shù),且)來(lái)進(jìn)行生態(tài)環(huán)境分析.
(1)當(dāng)時(shí),求比值取最小值時(shí)的值;
(2)經(jīng)過(guò)調(diào)查,環(huán)保部門(mén)發(fā)現(xiàn):當(dāng)比值不超過(guò)時(shí)不需要進(jìn)行環(huán)境防護(hù).為確保恰好3年不需要進(jìn)行保護(hù),求實(shí)數(shù)的取值范圍.(為自然對(duì)數(shù)的底, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為了普及奧運(yùn)會(huì)知識(shí)和提高學(xué)生參加體育運(yùn)動(dòng)的積極性,舉行了一次奧運(yùn)知識(shí)競(jìng)賽.隨機(jī)抽取了30名學(xué)生的成績(jī),繪成如圖所示的莖葉圖,若規(guī)定成績(jī)?cè)?5分以上(包括75分)的學(xué)生定義為甲組,成績(jī)?cè)?5分以下(不包括75分)定義為乙組.
(Ⅰ)在這30名學(xué)生中,甲組學(xué)生中有男生7人,乙組學(xué)生中有女生12人,試問(wèn)有沒(méi)有90%的把握認(rèn)為成績(jī)分在甲組或乙組與性別有關(guān);
(Ⅱ)記甲組學(xué)生的成績(jī)分別為x1 , x2 , …,x12 , 執(zhí)行如圖所示的程序框圖,求輸出的S的值;
(Ⅲ)競(jìng)賽中,學(xué)生小張、小李同時(shí)回答兩道題,小張答對(duì)每道題的概率均為 ,小李答對(duì)每道題的概率均為 ,兩人回答每道題正確與否相互獨(dú)立.記小張答對(duì)題的道數(shù)為a,小李答對(duì)題的道數(shù)為b,X=|a﹣b|,寫(xiě)出X的概率分布列,并求出X的數(shù)學(xué)期望.
附:K2= ;其中n=a+b+c+d
獨(dú)立性檢驗(yàn)臨界表:
P(K2>k0) | 0.100 | 0.050 | 0.010 |
k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=xlnx,g(x)= .
(Ⅰ)記F(x)=f(x)﹣g(x),判斷F(x)在區(qū)間(1,2)內(nèi)零點(diǎn)個(gè)數(shù)并說(shuō)明理由;
(Ⅱ)記(Ⅰ)中的F(x)在(1,2)內(nèi)的零點(diǎn)為x0 , m(x)=min{f(x),g(x)},若m(x)=n(n∈R)在(1,+∞)有兩個(gè)不等實(shí)根x1 , x2(x1<x2),判斷x1+x2與2x0的大小,并給出對(duì)應(yīng)的證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分8分)某班50名學(xué)生在一次數(shù)學(xué)測(cè)試中,成績(jī)?nèi)拷橛?/span>50與100之間,將測(cè)試結(jié)果按如下方式分成五組:第一組[50,60),第二組[60,70),…,第五組[90,100].如圖所示是按上述分組方法得到的頻率分布直方圖.
(Ⅰ)若成績(jī)大于或等于60且小于80,認(rèn)為合格,求該班在這次數(shù)學(xué)測(cè)試中成績(jī)合格的人數(shù);
(Ⅱ)從測(cè)試成績(jī)?cè)?/span>[50,60)∪[90,100]內(nèi)的所有學(xué)生中隨機(jī)抽取兩名同學(xué),設(shè)其測(cè)試成績(jī)分別為m、n,求事件“|m﹣n|>10”概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為了普及奧運(yùn)會(huì)知識(shí)和提高學(xué)生參加體育運(yùn)動(dòng)的積極性,舉行了一次奧運(yùn)知識(shí)競(jìng)賽.隨機(jī)抽取了30名學(xué)生的成績(jī),繪成如圖所示的莖葉圖,若規(guī)定成績(jī)?cè)?5分以上(包括75分)的學(xué)生定義為甲組,成績(jī)?cè)?5分以下(不包括75分)定義為乙組.
(Ⅰ)在這30名學(xué)生中,甲組學(xué)生中有男生7人,乙組學(xué)生中有女生12人,試問(wèn)有沒(méi)有90%的把握認(rèn)為成績(jī)分在甲組或乙組與性別有關(guān);
(Ⅱ)記甲組學(xué)生的成績(jī)分別為x1 , x2 , …,x12 , 執(zhí)行如圖所示的程序框圖,求輸出的S的值;
(Ⅲ)競(jìng)賽中,學(xué)生小張、小李同時(shí)回答兩道題,小張答對(duì)每道題的概率均為 ,小李答對(duì)每道題的概率均為 ,兩人回答每道題正確與否相互獨(dú)立.記小張答對(duì)題的道數(shù)為a,小李答對(duì)題的道數(shù)為b,X=|a﹣b|,寫(xiě)出X的概率分布列,并求出X的數(shù)學(xué)期望.
附:K2= ;其中n=a+b+c+d
獨(dú)立性檢驗(yàn)臨界表:
P(K2>k0) | 0.100 | 0.050 | 0.010 |
k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC的三個(gè)內(nèi)角A、B、C的對(duì)邊分別是a、b、c,其面積S=a2﹣(b﹣c)2 . 若a=2,則BC邊上的中線長(zhǎng)的取值范圍是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com