8.已知函數(shù)f(x)=ax3+x+1的圖象在點(1,f(1))的處的切線過點(2,11),則 a=( 。
A.$\frac{3}{2}$B.$\frac{5}{4}$C.1D.2

分析 求出函數(shù)的導(dǎo)數(shù),利用切線的方程經(jīng)過的點求解即可.

解答 解:函數(shù)f(x)=ax3+x+1的導(dǎo)數(shù)為:f′(x)=3ax2+1,f′(1)=3a+1,而f(1)=a+2,
切線方程為:y-a-2=(3a+1)(x-1),
因為切線方程經(jīng)過(2,11),
所以11-a-2=(3a+1)(2-1),
解得a=2.
故選:D.

點評 本題考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,切線方程的求法,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知$sinα=\frac{{\sqrt{5}}}{5}$且α是銳角,tanβ=-3,且β為鈍角,則α+β的值為( 。
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知(2x-1)2015=a0+a1x+a2x2+…+a2015x2015(x∈R),則a1+a2+a3+…+a2015=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知一個多面體的內(nèi)切球的半徑為3,多面體的表面積為15,則此多面體的體積為( 。
A.45B.15C.D.15π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.拋物線y2=4x的焦點為F,過點F的直線交拋物線于A,B兩點.
(1)若$\overrightarrow{AF}=2\overrightarrow{FB}$,求直線AB的斜率;
(2)求△OAB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知點F為拋物線E:y2=2px(p>0)的焦點,點A(3,m)在拋物線E上,且|AF|=4.
(Ⅰ)求拋物線E的方程;
(Ⅱ)已知點G(-1,0),延長AF交拋物線E于點B,證明:以點F為圓心且與直線GA相切的圓,必與直線GB相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.命題P:“A=30°”是命題Q:“sinA=$\frac{1}{2}$”的(  )條件.
A.充要B.充分不必要
C.必要不充分D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若函數(shù)y=f(x)滿足f(x+2)=f(x),且x∈[-1,1]時,$f(x)=cos\frac{πx}{2}$,函數(shù)$g(x)=\left\{\begin{array}{l}lgx,x>0\\-\frac{1}{x},x<0\end{array}\right.$,則函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,5]內(nèi)零點的個數(shù)是( 。
A.8B.7C.6D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.A,B兩地相距300km,汽車從A地以vkm/h的速度勻速行駛到B地(速度不得超過60km/h).已知汽車每小時的運輸成本由固定成本和可變成本組成,固定成本為250元,可變成本(單位:元)與速度v的立方成正比,比例系數(shù)$\frac{1}{1000}$,設(shè)全程的運輸成本為y元.
(1)求y關(guān)于v的函數(shù)關(guān)系;
(2)為使全程運輸成本最小,汽車應(yīng)以多大速度行駛?

查看答案和解析>>

同步練習(xí)冊答案