【題目】為了了解某地區(qū)高三學(xué)生的身體發(fā)育情況,抽查了該地區(qū)100名年齡為17.5歲~18歲的男生體重(kg),得到頻率分布直方圖如下:求:

(1)根據(jù)直方圖可得這100名學(xué)生中體重在(56,64)的學(xué)生人數(shù).

(2)請(qǐng)根據(jù)上面的頻率分布直方圖估計(jì)該地區(qū)17.5-18歲的男生體重.

(3)若在這100名男生中隨意抽取1人,該生體重低于62的概率是多少?

【答案】(1)40;(2)65.2kg;(3P=0.28

【解析】

(1)根據(jù)頻率直方圖的性質(zhì),即可求解這100名學(xué)生中體重在(56,64)的學(xué)生人數(shù);

(2)根據(jù)頻率分布直方圖中樣本的平均數(shù)的計(jì)算公式,即可求解;

(3)根據(jù)頻率分布直方圖的性質(zhì),即可求得樣本數(shù)據(jù)中低于62kg的頻率。

(1)根據(jù)頻率直方圖得,這100名學(xué)生中體重在(56,64)的學(xué)生人數(shù)為:

(人);

(2)根據(jù)頻率分布直方圖得,樣本的平均數(shù)是:

即利用平均數(shù)來(lái)衡量該地區(qū)17.5-18歲的男生體重是65.2kg;

(3)根據(jù)頻率分布直方圖得,樣本數(shù)據(jù)中低于62kg的頻率是 ,

∴這100名男生中隨意抽取1人,該生體重低于62kg的概率是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的右焦點(diǎn)為,右頂點(diǎn)為,已知,其中為原點(diǎn),為橢圓的離心率.

(1)求橢圓的方程;

(2)設(shè)過(guò)點(diǎn)的直線與橢圓交于點(diǎn)不在軸上),垂直于的直線與交于點(diǎn),與軸交于點(diǎn),若,且,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)若,求函數(shù)的極值;

(Ⅱ)若,,,使得),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),函數(shù),有無(wú)數(shù)個(gè)零點(diǎn),則實(shí)數(shù)的最大值為___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a,b,c分別為ABC三個(gè)內(nèi)角AB,C的對(duì)邊,2bcosA=acosC+ccosA

1)求角A的大。

2)若a=3,ABC的周長(zhǎng)為8,求ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在正三棱柱ABCA1B1C1中,AB=2,AA1=2,由頂點(diǎn)B沿棱柱側(cè)面(經(jīng)過(guò)棱AA1)到達(dá)頂點(diǎn)C1,與AA1的交點(diǎn)記為M.求:

(1)三棱柱側(cè)面展開(kāi)圖的對(duì)角線長(zhǎng);

(2)從B經(jīng)M到C1的最短路線長(zhǎng)及此時(shí)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列的前n項(xiàng)和為,已知).

(1)求證:數(shù)列為等比數(shù)列;

(2)若數(shù)列滿足:

求數(shù)列的通項(xiàng)公式;

是否存在正整數(shù)n,使得成立?若存在,求出所有n的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018河北保定市上學(xué)期期末調(diào)研已知點(diǎn)到點(diǎn)的距離比到軸的距離大1

I)求點(diǎn)的軌跡的方程;

II)設(shè)直線 ,交軌跡兩點(diǎn), 為坐標(biāo)原點(diǎn),試在軌跡部分上求一點(diǎn),使得的面積最大,并求其最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng),函數(shù)在區(qū)間上為增函數(shù),求整數(shù)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案