分析 (1)由已知可得B=C,A=π-2B,利用二倍角的余弦函數(shù)公式,誘導(dǎo)公式化簡(jiǎn)已知可得cos2B+4sin2BcosB=1,結(jié)合同角三角函數(shù)基本關(guān)系式即可求得cosB的值.
(2)由正弦定理可得:a=2c,利用二倍角的余弦函數(shù)公式化簡(jiǎn)已知可得:cos2B+4sin2C=1,結(jié)合同角三角函數(shù)基本關(guān)系式即可求得b=2c=a,即可得解三角形為等腰三角形.
解答 (本題滿分為12分)
解:(1)∵b=c,B=C,A=π-2B,
∴由cos2B=1-4sinAsinC,可得:2cos2B-1=1-4sin(π-2B)sinB,
∴cos2B+4sin2BcosB=1,
又∵cos2B+sin2B=1,
∴sin2B=4sin2BcosB,
∴cosB=$\frac{1}{4}$…6分
(2)∵$\frac{sinA}{sinC}=2$,sinA=2sinC,
∴由正弦定理可得:a=2c,
∵cos2B=1-4sinAsinC,可得:2cos2B-1=1-8sin2C,整理可得:cos2B+4sin2C=1,
又∵cos2B+sin2B=1,
∴4sin2C=sin2B,可得:sinB=2sinC,
∴b=2c=a,三角形為等腰三角形…12分
點(diǎn)評(píng) 本題主要考查了二倍角的余弦函數(shù)公式,誘導(dǎo)公式,同角三角函數(shù)基本關(guān)系式,正弦定理在解三角形中的綜合應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ${e}^{{x}_{1}}$f(x2)>${e}^{{x}_{2}}$ex2f(x1) | |
B. | ${e}^{{x}_{1}}$f(x2)<${e}^{{x}_{2}}$f(x1) | |
C. | ${e}^{{x}_{1}}$f(x2)=${e}^{{x}_{2}}$f(x1) | |
D. | ${e}^{{x}_{1}}$f(x2)與${e}^{{x}_{2}}$f(x1)的大小關(guān)系不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 在區(qū)間($\frac{1}{e},1$),(1,e)內(nèi)均有零點(diǎn) | |
B. | 在區(qū)間($\frac{1}{e},1$),(1,e)內(nèi)均無零點(diǎn) | |
C. | 在區(qū)間($\frac{1}{e},1$)內(nèi)有零點(diǎn),在區(qū)間(1,e)內(nèi)無零點(diǎn) | |
D. | 在區(qū)間($\frac{1}{e},1$)內(nèi)無零點(diǎn),在區(qū)間(1,e)內(nèi)有零點(diǎn) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com