8.已知偶函數(shù)f(x)是定義在[-2,2]上的函數(shù),在[0,2]上遞減,且f(1-m)<f(m),求m的取值范圍.
已知奇函數(shù)f(x)在定義域(-1,1)上是減函數(shù),且f(1-a)+f(1-a2)<0,求 a 的取值范圍.

分析 由題條件知函數(shù)在[0,2]上是減函數(shù),在[-2,0]上是增函數(shù),其規(guī)律是自變量的絕對值越小,其函數(shù)值越大,由此可直接將f(1-m)<f(m)轉(zhuǎn)化成一般不等式,再結(jié)合其定義域可以解出m的取值范圍;
把f(1-a)+f(1-a2)<0利用奇函數(shù)的定義轉(zhuǎn)化為f(1-a)<f(a2-1),再利用f(x)在定義域(-1,1)上是減函數(shù)可得a的取值范圍.

解答 解:∵函數(shù)是偶函數(shù),
∴f(1-m)=f(|1-m|),f(m)=f(|m|),
∵定義在[-2,2]上的偶函數(shù)f(x)在區(qū)間[0,2]上單調(diào)遞減,f(1-m)<f(m),
∴0≤|m|<|1-m|≤2,
解得:-1≤m<$\frac{1}{2}$;
∵f(x)是奇函數(shù),
∴f(1-a)+f(1-a2)<0?f(1-a)<f(a2-1),
由題得f(1-a)+f(1-a2)<0,∴$\left\{\begin{array}{l}{1-a>{a}^{2}-1}\\{1-a<1}\\{{a}^{2}-1>-1}\end{array}\right.$,∴0<a<1.

點評 本題考點是奇偶性與單調(diào)性的綜合,考查利用抽象函數(shù)的單調(diào)性解抽象不等式,解決此類題的關(guān)鍵是將函數(shù)的性質(zhì)進行正確的轉(zhuǎn)化,將抽象不等式轉(zhuǎn)化為一般不等式求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)集合A={x|x≤$\sqrt{15}$},a=4,則下列關(guān)系成立的是(  )
A.a⊆AB.{a}⊆AC.a∈AD.a∉A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知$\frac{π}{2}$≤β≤α≤$\frac{3π}{4}$,cos(α-β)=$\frac{12}{13}$,sin(α+β)=-$\frac{3}{5}$,求sin2α,cos2β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x(x>0)}\\{{3}^{x}(x≤0)}\end{array}\right.$,則f(f($\frac{1}{2}$))]=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)定義域為[-1,1],若對于任意的x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0時,有f(x)>0.
(1)證明函數(shù)f(x)是奇函數(shù);
(2)討論函數(shù)f(x)在區(qū)間[-1,1]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知直線l1:(a+2)x+3y=5與直線l2:(a-1)x+2y=6平行,則直線l1在x軸上的截距為( 。
A.-1B.$\frac{5}{9}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,cosB=-$\frac{5}{13}$,sinC=$\frac{4}{5}$.
(1)求cosA的值;
(2)設(shè)AC=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.△ABC中,cos2B=1-4sinAsinC,
(1)若b=c,求cosB;
(2)若$\frac{sinA}{sinC}=2$,判斷△ABC形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.$(2\overrightarrow a+9\overrightarrow b-2\overrightarrow c)-(\overrightarrow a+7\overrightarrow b-2\overrightarrow c)$=$\overrightarrow{a}+2\overrightarrow$.

查看答案和解析>>

同步練習(xí)冊答案