分析 由題條件知函數(shù)在[0,2]上是減函數(shù),在[-2,0]上是增函數(shù),其規(guī)律是自變量的絕對值越小,其函數(shù)值越大,由此可直接將f(1-m)<f(m)轉(zhuǎn)化成一般不等式,再結(jié)合其定義域可以解出m的取值范圍;
把f(1-a)+f(1-a2)<0利用奇函數(shù)的定義轉(zhuǎn)化為f(1-a)<f(a2-1),再利用f(x)在定義域(-1,1)上是減函數(shù)可得a的取值范圍.
解答 解:∵函數(shù)是偶函數(shù),
∴f(1-m)=f(|1-m|),f(m)=f(|m|),
∵定義在[-2,2]上的偶函數(shù)f(x)在區(qū)間[0,2]上單調(diào)遞減,f(1-m)<f(m),
∴0≤|m|<|1-m|≤2,
解得:-1≤m<$\frac{1}{2}$;
∵f(x)是奇函數(shù),
∴f(1-a)+f(1-a2)<0?f(1-a)<f(a2-1),
由題得f(1-a)+f(1-a2)<0,∴$\left\{\begin{array}{l}{1-a>{a}^{2}-1}\\{1-a<1}\\{{a}^{2}-1>-1}\end{array}\right.$,∴0<a<1.
點評 本題考點是奇偶性與單調(diào)性的綜合,考查利用抽象函數(shù)的單調(diào)性解抽象不等式,解決此類題的關(guān)鍵是將函數(shù)的性質(zhì)進行正確的轉(zhuǎn)化,將抽象不等式轉(zhuǎn)化為一般不等式求解.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a⊆A | B. | {a}⊆A | C. | a∈A | D. | a∉A |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | $\frac{5}{9}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com