【題目】已知球與正三棱柱(底面為正三角形的直棱柱)的所有表面都相切,并且該三棱柱的六個頂點都在球上,則球與球的表面積之比為( )
A.B.C.D.
科目:高中數(shù)學 來源: 題型:
【題目】 如圖,在四棱錐中,底面為平行四邊形,為等邊三角形,平面平面,,,,
(Ⅰ)設分別為的中點,求證:平面;
(Ⅱ)求證:平面;
(Ⅲ)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線T上的任意一點到兩定點的距離之和為,直線l交曲線T于A、B兩點,為坐標原點.
(1)求曲線的方程;
(2)若不過點且不平行于坐標軸,記線段AB的中點為M,求證:直線的斜率與l的斜率的乘積為定值;
(3)若OAOB,求△面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】用五種不同顏色給三棱臺的六個頂點染色,要求每個點染一種顏色,且每條棱的兩個端點染不同顏色.則不同的染色方法有___________種.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當a=1時,求函數(shù)f(x)的單調遞減區(qū)間;
(2)當a<0時,f(x)在上的值域為,求a,b的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: ()的左右焦點分別為, ,若橢圓上一點滿足,且橢圓過點,過點的直線與橢圓交于兩點 .
(1)求橢圓的方程;
(2)過點作軸的垂線,交橢圓于,求證: , , 三點共線.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(選修4-4:坐標系與參數(shù)方程)在直角坐標系xOy中,曲線C的參數(shù)方程為(為參數(shù)),以原點O為極點,x軸的非負半軸為極軸取相同的長度單位建立極坐標系,射線與曲線C交于點A。
(1)求曲線C的普通方程與點A的極坐標;
(2)如下圖所示,點B在曲線C上(B在A的上方),,,且,求△AOB的面積。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對任意函數(shù),,可按如圖所示,構造一個數(shù)列發(fā)生器,其工作原理如下:
①輸入數(shù)據(jù),經數(shù)列發(fā)生器輸出;
②若,則數(shù)列發(fā)生器結束工作;若,將反饋回輸入端,再輸出,并依此規(guī)律進行下去.
現(xiàn)定義.
(1)若輸入,則由數(shù)列發(fā)生器產生數(shù)列,寫出數(shù)列的所有項;
(2)若要使數(shù)列發(fā)生器產生一個無窮的常數(shù)列,試求輸入的初始數(shù)據(jù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】湖北省從2021年開始將全面推行新高考制度,新高考“3+1+2”中的“2”要求考生從政治、化學、生物、地理四門中選兩科,按照等級賦分計入高考成績,等級賦分規(guī)則如下:高考政治、化學、生物、地理四門等級考試科目的考生原始成績從高到低劃分為A,B,C,D,E五個等級,確定各等級人數(shù)所占比例分別為15%,35%,35%,13%,2%,等級考試科目成績計入考生總成績時,將A至E等級內的考生原始成績,依照等比例轉換法分別轉換到、、、、五個分數(shù)區(qū)間,得到考生的等級分,等級轉換分滿分為100分.具體轉換分數(shù)區(qū)間如下表:
等級 | A | B | C | D | E |
比例 | 15% | 35% | 35% | 13% | 2% |
賦分區(qū)間 |
而等比例轉換法是通過公式計算:,其中、分別表示原始分區(qū)間的最低分和最高分,、分別表示等級分區(qū)間的最低分和最高分,Y表示原始分,T表示轉換分,當原始分為、時,等級分分別為、,假設小明同學的生物考試成績信息如下表:
考試科目 | 考試成績 | 成績等級 | 原始分區(qū)間 | 等級分區(qū)間 |
生物 | 75分 | B等級 |
設小明轉換后的等級成績?yōu)?/span>T,根據(jù)公式得:,所以(四舍五入取整),小明最終生物等級成績?yōu)?/span>77分.已知某學校學生有60人選了政治,以期中考試成績?yōu)樵汲煽冝D換該學校選政治的學生的政治等級成績,其中政治成績獲得A等級的學生原始成績統(tǒng)計如下表:
成績 | 90 | 86 | 81 | 80 | 79 | 78 | 75 |
人數(shù) | 1 | 2 | 1 | 1 | 2 | 1 | 1 |
(1)從政治成績獲得A等級的學生中任取3名,求至少有2名同學的等級成績不小于93分的概率;
(2)從政治成績獲得A等級的學生中任取4名,設4名學生中等級成績不小于93分人數(shù)為,求的分布列和期望.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com