設m,n是兩條不同的直線,α,β是兩個不同的平面,下列命題中正確的是(  )
A、若m∥n,n?α則 m∥α
B、若m?α,α⊥β,則m⊥β
C、若m∥n,m⊥α,則n⊥α
D、若m⊥n,m?α,n?β,則α⊥β
考點:空間中直線與平面之間的位置關系
專題:空間位置關系與距離
分析:利用空間中線線、線面、面面間的位置關系求解.
解答: 解:若m∥n,n?α則 m∥α或m?α,故A錯誤;
若m?α,α⊥β,則m與β相交、平行或m?β,故B錯誤;
若m∥n,m⊥α,則由直線與平面垂直的判定定理得n⊥α,故C正確;
若m⊥n,m?α,n?β,則α與β相交或平行,故D錯誤.
故選:C.
點評:本題考查命題真假的判斷,是基礎題,解題時要認真審題,注意空間思維能力的培養(yǎng).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,2cos(A+B)=1.
(1)求角C的度數(shù);
(2)若BC=a,AC=b且a,b是方程x2-2
3
x+2=0的兩個根,求AB的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義A°B=
AB,AB≥A+B
A+B,AB<A+B
,A•B=
A+B,AB≥A+B
AB,AB<A+B
,設x>0,A=
1
x+1
,B=x,則 A° B-A•B的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x,y滿足x2+y2-4x+1=0,則y-x的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(2,-3,5)
與向量
b
=(-4,x,y)
平行,則x,y的值分別是(  )
A、-6和10
B、6和-10
C、-6和-10
D、6和10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列結(jié)論正確的是( 。
①“a=1”是“直線x-ay=0與直線x+ay=0互相垂直”的充要條件
②函數(shù)f(x)=sin(2x-
π
6
)最小正周期為π,且圖象關于直線x=
π
3
對稱
③線性回歸直線至少經(jīng)過樣本點中的一個
④?x∈R,2x-1≥0的否定是?x∈R,2x-1<0.
A、②B、②④C、①②③D、①②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓x2+y2-4x-4=0上的點P(x,y),則x2+y2的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=-(1+λ)x2+2(1-λ)x+1在[-1,1]上是增函數(shù),求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題P:在R上定義運算?:x?y=(1-x)y.不等式x?(1-a)x<1對任意實數(shù)x恒成立;命題Q:若不等式
x2+ax+6
x+1
≥2對任意的x∈N*恒成立.若P∧Q為假命題,P∨Q為真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案